掌握
1、Laplace算子理论(通过Laplace卷积核求取图像边缘);
2、API使用;
3、代码演示;
Laplace理论
1、在图像像素二阶导数中,图像像素变化最大处的值为0,即边缘是零值,因此,理论上我们可以通过计算图像二阶导数,提取图像边缘;
2、数学原理:二阶导求导公式:
相关API
1、OpenCV中提供的函数:cv::Laplacian()
(不再分x方向,y方向)
注:depth—CV_16S; ksize–3(3阶卷积算子)
Laplace运算流程
- 高斯模糊降噪处理;
- 转换为灰度图像;
- 拉普拉斯计算;
- 取绝对值(负的值也是边缘有效信息);
- 显示结果;
Code
代码注意:Laplace受干扰影响大,Laplace计算完后可以使用threshold()阈值操作API再滤除下干扰;
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;
int main(int argc, char** argv)
{
Mat src,dst;
src = imread("C:\\Users\\hello\\Desktop\\lena512color.tiff");
if (!src.data)
{
cout << "could not load the image..." << endl;
return -1;
}
namedWindow("input image", CV_WINDOW_AUTOSIZE);
imshow("input image", src);
//Laplace运算
//Laplace的噪声比较明显 , 处理完成后可以再用图像阈值处理API处理一下
Mat g1,grayimage ;
GaussianBlur(src, g1, Size(3, 3), 0, 0);
cvtColor(g1, grayimage, CV_BGR2GRAY);
Laplacian(grayimage, dst, CV_16S, 3); //Size大小为3
convertScaleAbs(dst, dst); //转换为正值
threshold(dst, dst, 0, 255, THRESH_OTSU | THRESH_BINARY); //图像二值化
imshow("Laplace Image", dst);
waitKey(0);
return 0;
}
效果
注:threshold阈值处理,将图像转换为二值图像,轮廓效果显示更好。
Lena: