数据集
Electricity
321位顾客从2012年到2014年的每小时用电量
下载地址:UCI-ElectricityLoadDiagrams20112014 Data Set (压缩包大小为249M,解压后为678M)
ETT
2016年7月到2018年7月电力变压器来自2个站点)的数据,包括负载、油温。ETTm1/ETTm2每隔15分钟记录一次,ETTm1/ETTm2每隔一小时记录一次。
下载地址:zhouhaoyi / ETDataset (文件大小24M)
ILI
美国疾病控制和预防中心从2002年到2021年每周报告的一周内流感样疾病患者与总患者的比率。
Traffic
记录了2015年1月至2016年12月,旧金山湾区高速公路上的 862 个传感器测量的每小时道路占用率。
Weather
2020年马普生物地球化学研究所气象站每10分钟采集21个气象指标的气象时间序列。
下载地址:mpi_roof_2020a.zip (2020年1-6月);mpi_roof_2020b.zip (2020年7-12月)
Credit to Non-stationary Transformers: Exploring the Stationarity in Time Series Forecasting [Neurips 2022]
Benchmark Result
SCINet
SCINet: Time Series Modeling and Forecasting with Sample Convolution and Interaction 这篇文章发表在Neurips2022,代码已开源 。 这里初步地汇集一下文章中的结果:
短期时间序列预测,tau代表不同的预测间隔,短期预测考虑3,6,12,24步的向前预测。
一些观察:
- 使用正常卷积的TCN效果比使用因果卷积的TCN好,可能是因为纳入了更多信息,所以预测效果更好一点
- 除了加粗本文提出的模型效果最棒外,作者还使用蓝色下划线highlight了第二好的模型,以强调传统LSTM在短期时间序列的预测上比Transformer-based模型更好。
长期时间序列预测,此时考虑96,192,336,720步的前向预测。
文章在长期时间序列预测对比的benchmark上没有用LSTM/RNN等经典模型,只对比了Transformer-based的模型,其实作为读者我也很好奇LSTM/RNN在长期时间序列预测上的表现。
多元时间序列预测,可以看到SCINet和Autoformer仍然领先性能榜。与LSTM相比,降低了接近一半的MSE/MAE。
单变量时间序列预测,仍然是SCINet和Autoformer效果拔群。
值得一提的是文章使用了置换熵(Permutation Entropy, PE),来衡量原始序列和经过表达提取后的序列的可预测性。PE越低的序列越容易预测。可以看到,经过文章提出的模型进行变换后,序列的可预测性确实有了提升,PE有显著下降。
其他汇总资源
CUHK CURE Lab的一系列开源资源