Facebook:FastText 理解和在query意图识别的应用

本文介绍了Facebook的FastText算法在query意图识别任务中的应用,对比了Naive Bayes的效果,强调了FastText在训练速度和预测效率上的优势。FastText通过计算梯度和更新权重矩阵实现模型训练,采用不同的softmax模式处理损失函数。同时,文章讨论了FastText如何处理词的不同形态和不常见词的问题,以及词向量的生成和存储方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

fastText.pdf
Enriching Word Vectors with Subword Information.pdf
范涛
发表于2017-04-06

参考文献:

前言
        Facebook 在2016年第一次对外公开FastText算法时候,应该是引起很大一番讨论,因为论文提到他以更快的速度达到和DNN类似的效果。这里不再争论这点。当时吸引我一点的是他在大规模数据集上的扩展性和速度上都很棒,因为这两点十分适合工业界应用。当时正好在做query意图识相关的任务,语料也是几百万。最开始拿的是Navie Bayies做baseline,Navie Bayies这种生成模型在大语料下不仅训练耗时,关键让人失望的是,预测速度变得也不那么快。基于当时的现状,我觉得我可以接受些许准确率损失,来换来模型训练和预测时效性得显著提高。这个时候,我直接拿FastText来进行query 意图识别。结果FastText的效果果然没让我失望,训练耗时从之前几个小时到现在的几分钟,预测速度那叫一个快啊。更让我惊喜的是,准确性上一点也不差,有些场景比NB还好。

FastText 重点解析

FasText中分类模型示意图:
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值