scikit-learn sklearn XGBoost LightGBM使用汇总

1. 分类器

1.1 逻辑回归(Increase the number of iterations (max_iter) or scale the data as shown in)

  Logistic regression在sklearn中有不同的实现方式,即solver{‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’}, default=’lbfgs’,其中当solver为‘sag’或者‘liblinear’时,需要指定随机种子(The seed of the pseudo random number generator to use when shuffling the data)。

Changed in version 0.22: The default solver changed from ‘liblinear’ to ‘lbfgs’ in 0.22.

  所以如果scikit-learn版本低于0.22,使用默认参数,则就需要指定随机种子。
  但如果使用逻辑回归,出现下列警告Increase the number of iterations (max_iter) or scale the data as shown in

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

herosunly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值