聊聊决策树的分支策略

本文探讨了决策树在分类问题中的应用,重点在于二分类决策树的分支策略。通过基尼系数和熵作为不纯度指标,解释了如何选择特征进行分支以提高节点纯净度。基尼系数降低和信息增益最大化是决策树构建的目标,旨在创建更纯净的子节点,从而提升分类效果。
摘要由CSDN通过智能技术生成

0?wx_fmt=png

决策树算法既可以用于分类问题,又可以用于回归问题。针对分类问题,其目标在于根据属性对样本集合加以分支,使得各个分支所包含的样本集尽量只属于或者只包含一类。针对回归问题,其目标一般是使得各分支中所包含的样本目标函数(预测值跟真实值之间的偏差之和)最小化。

本文主要讨论决策树用于分类问题。二分类决策树算法是比较简单的一种决策树分类算法。决策树中比较关键的点就在于其中每个节点的分支策略,在某个节点进行分支时,如何分支,应该选择哪个特征执行分支时非常关键的。执行分支时,可以基于Gini系数或熵将某个节点分成两个子节点,分支目标是尽可能使得两个子节点中只包含两类中的其中一类,意即使得两个子节点都比较纯净。

子节点的基尼系数(也可以称作不纯度指标)计算公式如下:

0?wx_fmt=png

由此可以得到父节点的基尼系数:

0?wx_fmt=png

基于基尼系数分割决策树节点时,决策树的目标是使得基尼系数变小,即使得基尼增益越大越好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值