深度学习在OCR中的应用论文及代码集锦 (1)

本文汇总了六篇关于深度学习在OCR领域的应用论文,包括PixelLink、Detecting Oriented Text、Gated Recurrent Convolution Neural Network、TextBoxes、EAST和Faster R-CNN。这些论文提出的方法涉及实例分割、链接策略、循环神经网络等,旨在提高场景文本检测的效率和准确性。每篇论文都附带了实验结果和开源代码链接。
摘要由CSDN通过智能技术生成

[1] PixelLink: Detecting Scene Text via Instance Segmentation

Dan Deng et al.

AAAI 2018

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16469/16260

这篇文章提出了PixelLink,它是一种基于实例分割的场景文本检测算法。在这种算法中,文本实例分割是通过将同一个实例中的像素连接起来得到的。然后,文本边界直接从分割结果中提取,不需要利用位置回归来实现。

网络结构

640?wx_fmt=png

640?wx_fmt=png

实验结果如下

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

代码地址

https://github.com/ZJULearning/pixel_link

[2] Detecting Oriented Text in Natural Images by Linking Segments

Baoguang Shi Xiang Bai Serge Belongie

CVPR 2017

http://openaccess.thecvf.com/content_cvpr_2017

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值