深度学习用于文本摘要的论文及代码集锦

本文介绍了五篇关于深度学习用于文本摘要的论文,涉及神经注意力模型、指针-生成器网络、条件RNN、强化学习和深度循环生成解码器等方法。每篇论文都提供了相应的代码实现,展示了不同模型在生成和提取文本摘要上的效果。
摘要由CSDN通过智能技术生成

[1] A Neural Attention Model for Sentence Summarization

Alexander M. Rush et al.

Facebook AI Research / Harvard SEAS

EMNLP 2015

https://www.aclweb.org/anthology/D/D15/D15-1044.pdf

这篇文章提出一种完全数据驱动的方法对句子进行摘要汇总。该方法根据输入的句子利用局部注意力模型来生成摘要中的每个单词。虽然该模型结构上比较简单,但是可以简单的端到端的来训练,并且可以扩展到巨大的训练数据集中。

文本摘要对齐示例如下

640?wx_fmt=png

文本输入以及摘要示例如下

640?wx_fmt=png

注意力编码示例如下

640?wx_fmt=png

Beam search 算法伪代码示例如下

640?wx_fmt=png

各方法结果对比如下

640?wx_fmt=png

640?wx_fmt=png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值