DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems
Ruoxi Wang, Rakesh Shivanna, Derek Z. Cheng, Sagar Jain, Dong Lin, Lichan Hong, Ed H. Chi
https://arxiv.org/pdf/2008.13535.pdf
构建推荐系统的关键之一在于学习到有效的特征交叉。
但是,稀疏大规模特征空间中识别有效特征交互非常耗时。DCN可以自动并且高效学习限定度的预测性特征交互。在大规模流量的十亿级别的训练样本中建模时,DCN在学习预测性更强的特征交互时,交叉网络暴露出了它在表示性方面的局限性。虽然一些重要研究成果涌现出来,很多生产环境中的深度学习模型依然依赖传统前向传播神经网络来学习特征交互,这种方式并不高效。
基于DCN和现有特征交互学习方法的优缺点,作者们提出一种改进的框架,DCN-V2,这种改进可以使得DCN更适用于大规模工业界场景中。通过大量超参搜索和模型调优,作者们发现DCN-V2在比较流行的基准数据集上效果优于其它STOA算法。
改进的DCN-v2表达能力更强,在特征交互学习中也比较高效,尤其是跟低秩混合结构融合时。DCN-v2比较简单,很容易作为堆叠的块,在谷歌的很多大规模学习排序系统中不仅线下准确率有显著提升,而且线上业务指标也有显著提升。
这篇文章的主要贡献如下
相关模型主要有以下几种
作者们所提模型图示如下
其中堆叠式中,cross网络跟deep部分是串行的,并行式中,cross网络跟deep部分是并行的
嵌入层简介及特点描述如下
下面是cross网络简介
作者们所提出的cross网络图示如下
深层网络的表达式如下
目标函数形式如下
权重矩阵的奇异值变化趋势以及低秩专家的组合图示如下
在子空间中学习特征交互可以借助moe来实现
复杂度分析如下
作者们所提模型跟DCN的区别如下
跟dlrm和deepfm之间的关系如下
跟xdeepfm之间的关系如下
跟autoint的区别在于
跟pnn的关系如下
DCN DCN-V2和深度神经网络在人工数据集上的效果对比如下
DCN和DCN-V2对于不同的特征交互的阶效果对比如下
层数对DCN和DCN-