YOLOv8目标检测创新改进与实战案例专栏
专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLOv8基础解析+创新改进+实战案例
介绍

摘要
学习有效的特征交叉是构建推荐系统的关键。然而,稀疏且庞大的特征空间需要进行穷举搜索以识别有效的交叉。深度与交叉网络(DCN)被提出以自动且高效地学习有界度的预测性特征交互。不幸的是,在处理数十亿训练示例的大规模网络流量的模型中,DCN 在交叉网络方面表现出有限的表达能力,无法学习更多预测性的特征交互。尽管在这方面取得了显著的研究进展,许多生产中的深度学习模型仍然依赖传统的前馈神经网络来低效地学习特征交叉。
鉴于 DCN 和现有特征交互学习方法的优缺点,我们提出了改进框架 DCN-V2,以使 DCN 在大规模工业环境中更加实用。在进行广泛的超参数搜索和模型调优的综合实验研究中,我们观察到 DCN-V2 方法在流行的基准数据集上表现优于所有最先进的算法。改进后的 DCN-V2 更具表达力,但在特征交互学习方面仍然保持成本效益,特别是在与低秩架构混合使用时。DCN-V2 简单易用,可以轻松作为构建模块,并且在 Google 的许多大规模网页排序系统中显著提高了离线准确性和在线业务指标。
文章链接
论文地址:论文地址
**代码地址:**代码地址
基本原理
核心代码
下载YoloV8代码
直接下载

Git Clone
git clone https
订阅专栏 解锁全文
2532

被折叠的 条评论
为什么被折叠?



