书上没有考虑数列的收敛,可能是太简单了。。。
数项级数判别法知识点较多,总结如下
柯西收敛准则
必要条件无穷远处是0
考虑发散可能会用到这个
正项级数
1.部分和数列有界,抽象数列较为常见
2.第一比较判别法,
u
n
<
v
n
u_{n}<v_{n}
un<vn
3.第二比较判别法,
u
n
n
p
u_{n}n^p
unnp或者
q
n
u
n
q^nu_{n}
qnun,
n
n
n无穷大时候的情况(与p幂法相似)
4.第三比较判别法,两个级数相邻两项比值比较
u
n
+
1
u
n
>
v
n
+
1
v
n
\frac{u_{n+1}}{u_{n}}>\frac{v_{n+1}}{v_{n}}
unun+1>vnvn+1
5.达朗贝尔判别法
u
n
+
1
u
n
<
1
\frac{u_{n+1}}{u_{n}}<1
unun+1<1一般这个较为常用。等于1不能确定收敛性,要用高斯判别法
6.柯西判别法
u
n
n
<
1
\sqrt[n]{u_{n}}<1
nun<1,n在无穷的时候。等于1不能判别。一般在n次方的时候用
以上两个都是用等比数列作为参照的
7.高斯判别法
u
n
u
n
+
1
=
1
+
a
n
+
O
(
1
n
)
\frac{u_{n}}{u_{n+1}}=1+\frac{a}{n}+O(\frac{1}{n})
un+1un=1+na+O(n1)
注意是倒过来比的,在达朗贝尔不能用时使用,
a
>
1
a>1
a>1收敛
这是用
1
n
q
\frac{1}{n^q}
nq1作为参照的
8.积分判别法,收敛性等价于无穷积分,要求函数是单减的。可能需要放缩以后用。
任意项级数
1.阿贝尔判别法,级数有界,数列单调趋于0
2.狄利克雷判别法,级数收敛,数列单调有界
以上两个有三角函数时候牵扯到三角函数级数
s
i
n
n
x
sinnx
sinnx收敛
3.莱布尼茨判别法,交错项级数,绝对值趋于0
4.如果正负都收敛,则绝对收敛