数项级数收敛判别

书上没有考虑数列的收敛,可能是太简单了。。。
数项级数判别法知识点较多,总结如下

柯西收敛准则

必要条件无穷远处是0

考虑发散可能会用到这个

正项级数

1.部分和数列有界,抽象数列较为常见
2.第一比较判别法, u n < v n u_{n}<v_{n} un<vn
3.第二比较判别法, u n n p u_{n}n^p unnp或者 q n u n q^nu_{n} qnun n n n无穷大时候的情况(与p幂法相似)
4.第三比较判别法,两个级数相邻两项比值比较 u n + 1 u n > v n + 1 v n \frac{u_{n+1}}{u_{n}}>\frac{v_{n+1}}{v_{n}} unun+1>vnvn+1
5.达朗贝尔判别法 u n + 1 u n < 1 \frac{u_{n+1}}{u_{n}}<1 unun+1<1一般这个较为常用。等于1不能确定收敛性,要用高斯判别法
6.柯西判别法 u n n < 1 \sqrt[n]{u_{n}}<1 nun <1,n在无穷的时候。等于1不能判别。一般在n次方的时候用
以上两个都是用等比数列作为参照的
7.高斯判别法 u n u n + 1 = 1 + a n + O ( 1 n ) \frac{u_{n}}{u_{n+1}}=1+\frac{a}{n}+O(\frac{1}{n}) un+1un=1+na+O(n1)
注意是倒过来比的,在达朗贝尔不能用时使用, a > 1 a>1 a>1收敛
这是用 1 n q \frac{1}{n^q} nq1作为参照的
8.积分判别法,收敛性等价于无穷积分,要求函数是单减的。可能需要放缩以后用。

任意项级数

1.阿贝尔判别法,级数有界,数列单调趋于0
2.狄利克雷判别法,级数收敛,数列单调有界
以上两个有三角函数时候牵扯到三角函数级数 s i n n x sinnx sinnx收敛
3.莱布尼茨判别法,交错项级数,绝对值趋于0
4.如果正负都收敛,则绝对收敛

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值