隐函数知识点总结

对于 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0可以有一个函数关系: y = f ( x ) y=f(x) y=f(x)则称 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0确定了一个隐函数。
也可写作 F ( x , f ( x ) ) = 0 F(x,f(x))=0 F(x,f(x))=0
就是说只要有函数关系就行,能不能具体写出表达式没有考虑。

隐函数存在定理(充分条件):

  1. F ( x , y ) F(x,y) F(x,y)在区域上连续
  2. F y ( x , y ) F_y(x,y) Fy(x,y)连续
  3. F y ( x 0 , y 0 ) ≠ 0 F_y(x_0,y_0)\not=0 Fy(x0,y0)=0
  4. F ( x 0 , y 0 ) = 0 F(x_0,y_0)=0 F(x0,y0)=0

那么F(x,y)=0确定了一个隐函数,且隐函数连续。
简单记为 F F F连续且等于0, F y F_y Fy连续且不等于0.
F y F_y Fy F F F对于y的偏导数。

如果增加两个条件

  1. F x ( x , y ) F_x(x,y) Fx(x,y)连续
  2. F x ( x , y ) F_x(x,y) Fx(x,y)不等于0,

那么隐函数就是唯一的

注意隐函数是在D上,D包含初始点

隐函数可微性定理:

  1. 隐函数存在(初始值等于0, F y F_y Fy连续且不等于0, F F F也连续),
  2. F x F_x Fx连续

则所确定的隐函数 y = f ( x ) y=f(x) y=f(x)有连续的导函数 f ′ ( x ) = − F x ( x , y ) F y ( x , y ) f'(x)=-\frac{F_x(x,y)}{F_y(x,y)} f(x)=Fy(x,y)Fx(x,y)
当然也可以直接把 y y y看作x的函数,对 x x x进行求导,得到的 y ′ y' y就是答案。
画关系图是这样的

F
x
y

所以 y ′ F y + F x = 0 y'F_y+F_x=0 yFy+Fx=0
第二种方法可能更加好,尤其是算二阶导的时候
更多元的时候也可以用这个方法,注意 x 1 , x 2 , . . . x n x_1,x_2,...x_n x1,x2,...xn是相互独立的

注意:
1.真正在求的时候隐函数导数的时候:
说明F连续, F x , F y F_x,F_y Fx,Fy连续,存在一点等于F=0,且 F y F_y Fy恒不等于0
然后对x求导就行,把y’表示出来
2.如果是F(x,y,z)确定的隐函数是z=f(x,y)则求导的时候先对x求导,再对y求导,导数有两个。并且y和x独立,就相当于常数。
3.最主要的是画关系图
4.对于二阶导,也可能是一阶导的式子求出来以后发现满足一个关系,那么对这个新式子求导
看一个比较烦的例子:
u = x 2 + y 2 + z 2 , z = f ( x , y ) u=x^2+y^2+z^2,z=f(x,y) u=x2+y2+z2z=f(x,y) x 2 − x y + y 2 = 1 x^2-xy+y^2=1 x2xy+y2=1确定
u x , u y u_x,u_y ux,uy
那么第一个式子可以写成F(x,y,z,u)=0,z又是x,y的函数,关系如下

F
x
y
z
u

看那些路径到了x,那么对x求导就是 F x + F u u x + F z z x = 0 F_x+F_uu_x+F_zz_x=0 Fx+Fuux+Fzzx=0
然后解 u x u_x ux就可以了,发现有个 z x z_x zx,那么对后一个式子如法炮制算出来。F的函数式当然已知。
如果求 u x x u_xx uxx那么直接对 u x u_x ux求导

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值