对于
F
(
x
,
y
)
=
0
F(x,y)=0
F(x,y)=0可以有一个函数关系:
y
=
f
(
x
)
y=f(x)
y=f(x)则称
F
(
x
,
y
)
=
0
F(x,y)=0
F(x,y)=0确定了一个隐函数。
也可写作
F
(
x
,
f
(
x
)
)
=
0
F(x,f(x))=0
F(x,f(x))=0
就是说只要有函数关系就行,能不能具体写出表达式没有考虑。
隐函数存在定理(充分条件):
- F ( x , y ) F(x,y) F(x,y)在区域上连续
- F y ( x , y ) F_y(x,y) Fy(x,y)连续
- F y ( x 0 , y 0 ) ≠ 0 F_y(x_0,y_0)\not=0 Fy(x0,y0)=0
- F ( x 0 , y 0 ) = 0 F(x_0,y_0)=0 F(x0,y0)=0
那么F(x,y)=0确定了一个隐函数,且隐函数连续。
简单记为
F
F
F连续且等于0,
F
y
F_y
Fy连续且不等于0.
F
y
F_y
Fy是
F
F
F对于y的偏导数。
如果增加两个条件
- F x ( x , y ) F_x(x,y) Fx(x,y)连续
- F x ( x , y ) F_x(x,y) Fx(x,y)不等于0,
那么隐函数就是唯一的
注意隐函数是在D上,D包含初始点
隐函数可微性定理:
- 隐函数存在(初始值等于0, F y F_y Fy连续且不等于0, F F F也连续),
- F x F_x Fx连续
则所确定的隐函数
y
=
f
(
x
)
y=f(x)
y=f(x)有连续的导函数
f
′
(
x
)
=
−
F
x
(
x
,
y
)
F
y
(
x
,
y
)
f'(x)=-\frac{F_x(x,y)}{F_y(x,y)}
f′(x)=−Fy(x,y)Fx(x,y)
当然也可以直接把
y
y
y看作x的函数,对
x
x
x进行求导,得到的
y
′
y'
y′就是答案。
画关系图是这样的
所以
y
′
F
y
+
F
x
=
0
y'F_y+F_x=0
y′Fy+Fx=0
第二种方法可能更加好,尤其是算二阶导的时候
更多元的时候也可以用这个方法,注意
x
1
,
x
2
,
.
.
.
x
n
x_1,x_2,...x_n
x1,x2,...xn是相互独立的
注意:
1.真正在求的时候隐函数导数的时候:
说明F连续,
F
x
,
F
y
F_x,F_y
Fx,Fy连续,存在一点等于F=0,且
F
y
F_y
Fy恒不等于0
然后对x求导就行,把y’表示出来
2.如果是F(x,y,z)确定的隐函数是z=f(x,y)则求导的时候先对x求导,再对y求导,导数有两个。并且y和x独立,就相当于常数。
3.最主要的是画关系图
4.对于二阶导,也可能是一阶导的式子求出来以后发现满足一个关系,那么对这个新式子求导
看一个比较烦的例子:
u
=
x
2
+
y
2
+
z
2
,
z
=
f
(
x
,
y
)
u=x^2+y^2+z^2,z=f(x,y)
u=x2+y2+z2,z=f(x,y)由
x
2
−
x
y
+
y
2
=
1
x^2-xy+y^2=1
x2−xy+y2=1确定
求
u
x
,
u
y
u_x,u_y
ux,uy
那么第一个式子可以写成F(x,y,z,u)=0,z又是x,y的函数,关系如下
看那些路径到了x,那么对x求导就是
F
x
+
F
u
u
x
+
F
z
z
x
=
0
F_x+F_uu_x+F_zz_x=0
Fx+Fuux+Fzzx=0
然后解
u
x
u_x
ux就可以了,发现有个
z
x
z_x
zx,那么对后一个式子如法炮制算出来。F的函数式当然已知。
如果求
u
x
x
u_xx
uxx那么直接对
u
x
u_x
ux求导