【论文阅读】【3d目标检测】voxelnet

论文标题:VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection

挺经典的一篇文章,苹果公司出品。
挺久前看的了,感觉需要记录一下结构,方便以后查阅。
在这里插入图片描述
网络架构分为三个部分: (1) Feature learning network, (2) Convolutional middle layers, and (3) Region proposal network

Feature learning network

这部分作者提出了著名的VFE模块,这个模块被后续的网络广泛的魔改应用,感觉需要仔细记录一下:
在这里插入图片描述
首先将点云voxel化,对于voxel内的点进行随机采样到T个。随后利用FCN对于单个点进行编码,当然编码前对于点进行本地化处理,随后对于提取到的特征进行max操作,得到的特征与每个point进行特征concat拼接。
这个操作进行了多次的VFE模块叠加,最后max操作得到每个voxel的feature作为输出。由此我们对于voxel图进行了特征的编码。

Convolutional Middle Layers

在这里插入图片描述
没啥好说的 做的还是2d卷积,实际上是把平面内voxel的点进行了卷积,随后进行了不同的feature拼接。

Region Proposal Network

1x1的卷积 输出预测图

思考

早期3d目标检测作品,写这篇文章主要是方便自己以后查阅。
VFE对于单个voxel内的点的特征提取比较有用,为后续许多网络使用。
对比一下pointnet++:
文章的划分voxel操作像不像sa层来进行特征提取,后面的特征融合voxelnet主要依靠2d卷积而pointnet++则依靠sa层后插值得到。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值