【第56篇】GhostNet:廉价操作得到更多的特征

本文提出了一种名为Ghost模块的新方法,通过低成本运算生成更多特征图,以减少深度神经网络的参数数量和计算复杂度。Ghost模块在保持输出特征映射不变的情况下,降低了普通卷积层的需求,可用于构建轻量级的GhostNet。实验表明,GhostNet在ImageNet上的性能优于MobileNetV3,同时计算成本更低。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

论文链接:https://arxiv.org/pdf/1911.11907.pdf
在这里插入图片描述

由于内存和计算资源的限制,在嵌入式设备上部署卷积神经网络(CNNs)非常困难。特征映射的冗余性是成功的神经网络的一个重要特征,但在神经结构设计方面的研究很少。本文提出了一种新的Ghost模块,可以通过低成本操作生成更多的特征图。我们在一组内在特征映射的基础上,以较低的代价进行一系列线性变换,生成许多能充分揭示内在特征信息的Ghost特征映射。提出的Ghost模块可以作为即插即用组件来升级现有的卷积神经网络。Ghost瓶颈被设计成堆叠Ghost模块,这样就可以轻松建立轻量级的GhostNet。在基准测试上进行的实验表明,提出的Ghost模块是基线模型中卷积层的一个令人印象深刻的替代方案,我们的GhostNet在ImageNet ILSVRC-2012分类数据集上的计算成本与MobileNetV3相似,可以实现更高的识别性能(例如75.7%的top-1精度)。代码可从https://github.com/huawei-noah/ghostnet获得。

1. 简介

深度卷积神经网络在各种计算机视觉任务中表现出出色的性能,如图像识

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值