文章目录
摘要
论文链接:https://arxiv.org/pdf/1911.11907.pdf
由于内存和计算资源的限制,在嵌入式设备上部署卷积神经网络(CNNs)非常困难。特征映射的冗余性是成功的神经网络的一个重要特征,但在神经结构设计方面的研究很少。本文提出了一种新的Ghost模块,可以通过低成本操作生成更多的特征图。我们在一组内在特征映射的基础上,以较低的代价进行一系列线性变换,生成许多能充分揭示内在特征信息的Ghost特征映射。提出的Ghost模块可以作为即插即用组件来升级现有的卷积神经网络。Ghost瓶颈被设计成堆叠Ghost模块,这样就可以轻松建立轻量级的GhostNet。在基准测试上进行的实验表明,提出的Ghost模块是基线模型中卷积层的一个令人印象深刻的替代方案,我们的GhostNet在ImageNet ILSVRC-2012分类数据集上的计算成本与MobileNetV3相似,可以实现更高的识别性能(例如75.7%的top-1精度)。代码可从https://github.com/huawei-noah/ghostnet获得。
1. 简介
深度卷积神经网络在各种计算机视觉任务中表现出出色的性能,如图像识