Hiera:一个没有花哨的分层视觉转换器

Hiera是一个基于MAE预训练的高效、简洁的分层视觉Transformer,它移除了多余的复杂组件,如卷积、相对位置嵌入等,同时保持甚至提高了准确性。在图像和视频识别任务上,Hiera超越了现有模型,速度更快,精度更高,验证了预训练任务可以学习空间偏差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

https://arxiv.org/pdf/2306.00989.pdf
现代分层视觉转换器在追求监督分类性能时增加了几种视觉特定组件。 虽然这些组件可以提高准确性和吸引人的浮点运算次数,但增加的复杂性实际上使这些转换器比普通ViT转换器慢。 在本文中,我们认为这种额外的复杂性是不必要的。 通过使用强大的视觉预训练任务(MAE)进行预训练,我们可以从最先进的视觉转换器中去除所有花里胡哨的东西,同时不会丢失准确性。 在此过程中,我们创建了Hiera,这是一种极其简单的分层视觉转换器,它比以前的模型更准确,同时在推理和训练过程中速度更快。 我们在各种图像和视频识别任务上评估了Hiera。 我们的代码和模型可以在https://github.com/facebookresearch/hiera上找到。

1、简介

自几年前由Dosovitskiy等人(2021)引入以来,视觉转换器(Vision transformer, ViTs)在计算机视觉中的几个任务中占据主导地位。虽然结构简单,但它们的准确性(Touvron et al., 2022)和扩展能力(Zhai et al., 2021)使它们仍然是当今流行的选择。此外,它们的简单性开启了使用强大的预训练策略,如MAE (He et al., 2022),这使得vit的计算和数据训练效率更高。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值