论文
经典论文
-
Single Image Haze Removal Using Dark Channel Prior
- 作者:Kaiming He等
- 这篇论文提出了暗通道先验(Dark Channel Prior)方法,是单张图像去雾的开创性工作,广泛引用并成为后续研究的基准。
- 论文链接:CVPR 2009
-
DehazeNet: An End-to-End System for Single Image Haze Removal
- 这篇论文运用深度学习建立了一个端对端的去雾系统,重点在于介质传输图的估计。
- 论文链接:TIP 2016
-
AOD-Net: All-in-One Dehazing Network
- 这篇论文提出了一种端到端的去雾网络,简化了去雾过程中的大气光照估计。
- 论文链接:ICCV 2017
近期论文
-
FFA-Net: Feature Fusion Attention Network for Single Image Dehazing
- 这篇论文提出了一种特征融合注意网络,旨在直接恢复无雾图像。
- 论文链接:AAAI 2020
-
Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing
- 该论文利用增强的CycleGAN结构来提高去雾图像的视觉质量。
- 论文链接:IEEE Xplore
-
GridDehazeNet: Attention-Based Multi-Scale Network for Image Dehazing
- 这篇论文提出了一种基于注意力机制的多尺度网络,旨在改善去雾效果。
- 论文链接:GridDehazeNet
其他相关研究
-
Multi-Scale Boosted Dehazing Network With Dense Feature Fusion
- 这篇论文提出了一种基于U-Net架构的去雾网络,具有密集特征融合的特点。
- 论文链接:CVPR 2020
-
Gated Context Aggregation Network for Image Dehazing and Deraining
- 该论文提出了一种门控上下文聚合网络,解决了网格伪影问题。
- 论文链接:IEEE Xplore
1. Fast No-Reference Deep Image Dehazing
- 年份: 2024
- 主要内容: 本文提出了一种深度学习方法用于图像去雾,具有高计算速度和使用无配对图像数据进行训练的优势。该方法基于Zero-DCE方法,利用高阶曲线调整图像的动态范围以实现去雾。实验表明,该网络能够有效去除雾霾,同时保留细节并增强亮度,处理速度可达1000 FPS,适合实时去雾应用。
- 链接: Fast No-Reference Deep Image Dehazing
2. Image DeHazing Using Deep Learning Techniques
- 年份: 2020
- 主要内容: 本文实现了一种深度生成对抗网络(GAN)用于图像去雾。传统的去雾方法使用逐像素损失,导致即使在单个像素上有微小差异也会产生巨大差异。本文采用感知损失函数,提取图像的高层特征,解决了逐像素损失函数的问题。
- 链接: Image DeHazing Using Deep Learning Techniques
3. Multi-scale-based Network for Image Dehazing
- 年份: 2023
- 主要内容: 本文提出了一种基于深度学习的图像去雾方法,使用多尺度表示的VGG-16网络结构。该方法旨在提高去雾效果,特别是在处理复杂场景时。
- 链接: Multi-scale-based Network for Image Dehazing
4. Image Dehazing With Contextualized Attentive U-NET
- 年份: 2020
- 主要内容: 本文提出了一种基于U-Net的端到端卷积神经网络,用于图像去雾。该架构采用了压缩和激励机制,以提高去雾效果。
- 链接: Image Dehazing With Contextualized Attentive U-NET
5. RIDCP: Revitalizing Real Image Dehazing via High-Order Curve Adjustment
- 年份: 2023
- 主要内容: 本文提出了一种新的去雾范式,通过合成更真实的雾霾数据和引入高阶曲线调整来改善真实图像的去雾效果。
- 链接: RIDCP: Revitalizing Real Image Dehazing
6. Single Image Dehazing using CNN
- 年份: 2019
- 主要内容: 本文提出了一种使用卷积神经网络(CNN)的单幅图像去雾方法,利用引导滤波器找到图像中的雾霾。该方法在约1500张户外图像上进行了验证。
- 链接: Single Image Dehazing using CNN
7. Source-Free Domain Adaptation for Real-world Image Dehazing
- 年份: 2022
- 主要内容: 本文提出了一种新颖的无源无监督领域适应(SFUDA)图像去雾范式,仅依赖于一个经过良好训练的源模型和未标记的目标域图像。
- 链接: Source-Free Domain Adaptation for Real-world Image Dehazing
如何评估去雾算法的效果和性能?
评估去雾算法的效果和性能通常采用主观评价和客观评价两种方法。以下是这两种方法的详细介绍:
主观评价
主观评价是通过人眼观察去雾后的图像,直接评估其质量。这种方法强调人的视觉感受,通常包括以下几个方面:
-
清晰度: 评估图像中物体的边缘和细节是否足够清晰。
-
真实感: 去雾后的图像是否与实际场景相符,是否存在明显的失真或扭曲。
-
美观度: 基于人类的审美标准,对图像的整体视觉效果进行评价。
在进行主观评价时,通常会邀请一定数量的观察者参与评分,并对评分结果进行统计分析,以确保评价的准确性和可靠性[1][9]。
客观评价
客观评价则通过量化指标来精确衡量去雾算法的性能,常用的指标包括:
-
PSNR(Peak Signal to Noise Ratio): 衡量图像质量的经典指标,通过计算原始图像和去雾后图像之间的均方误差来评估失真程度。PSNR值越高,表示去雾效果越好。
-
SSIM(Structural Similarity Index): 衡量两幅图像相似度的指标,侧重于比较图像的结构信息。SSIM值越高,说明去雾后的图像与原始图像在结构上越相似。
-
EPE(End Point Error): 基于像素误差的评估指标,直接计算去雾后图像与原始图像之间的像素差异。EPE值越小,表示去雾效果越精确。
客观评价方法通常结合多种指标,以全面评估去雾算法的性能[2][9][10]。
综合评价
在实际应用中,结合主观评价和客观评价的方法可以提供更全面的评估结果。主观评价能够反映人类对图像质量的真实感受,而客观评价则提供了量化、可比较的指标,有助于指导算法的改进和优化。通过对比分析这两种评价的结果,可以更准确地评估去雾算法的实际效果,并为后续的研究提供有价值的参考[1][9][10]。
未来图像去雾技术可能会朝哪个方向发展?
未来图像去雾技术的发展方向主要集中在以下几个方面:
1. 深度学习的进一步优化
随着深度学习技术的不断进步,未来的去雾算法将更加依赖于深度学习模型,尤其是卷积神经网络(CNN)和生成对抗网络(GAN)。研究者们将致力于优化现有模型,以提高去雾效果和处理速度。例如,结合多尺度特征提取和注意力机制的网络架构将被广泛应用,以增强模型对复杂场景的适应能力[1][2][3]。
2. 物理模型的融合
未来的去雾技术可能会更加注重物理模型与深度学习的结合。通过将大气散射模型等物理原理嵌入深度学习框架,研究者可以更好地理解和模拟雾霾的形成过程,从而提高去雾效果的准确性和可解释性。这种方法不仅能提升去雾效果,还能增强模型的泛化能力[4][5][6]。
3. 实时处理能力的提升
随着计算能力的提升,未来的去雾算法将更加注重实时处理能力,尤其是在无人驾驶、监控等对实时性要求高的应用场景中。研究者们将探索轻量级模型和高效算法,以确保在保持高去雾效果的同时,能够快速处理图像[2][3][5]。
4. 多模态信息的融合
未来的去雾技术可能会探索联合多模态信息的去雾方法,例如结合红外、可见光和深度信息等多种数据源,以提高去雾效果。这种方法能够在不同环境条件下提供更为准确的去雾结果,尤其是在复杂的天气条件下[1][2][3]。
5. 应用场景的扩展
随着技术的进步,去雾技术的应用场景将不断扩展。除了传统的安防监控和无人驾驶,未来可能会在智慧城市、环境监测、航空航天等领域得到更广泛的应用。研究者将致力于开发适应不同场景需求的去雾算法,以满足实际应用的多样性[2][3][5]。
6. 数据增强与迁移学习
未来的去雾技术还将利用数据增强和迁移学习等技术,以提高模型的泛化能力和训练效率。通过生成合成数据或利用已有数据集,研究者可以更好地训练去雾模型,从而在不同的环境和条件下实现更好的去雾效果[1][2][3]。
综上所述,未来图像去雾技术的发展将集中在深度学习优化、物理模型融合、实时处理能力提升、多模态信息融合、应用场景扩展以及数据增强与迁移学习等多个方向。这些进展将推动去雾技术在各个领域的应用和发展。