随着大模型技术的快速发展,其在社会各行业的应用日益广泛。然而,大模型在带来效率提升的同时,也面临着“AI幻觉”等挑战,其中训练数据的准确性是影响大模型“认知能力”的关键因素。为了从数据源头降低大模型的“幻觉”风险,合合信息近日正式发布了“大模型加速器2.0”版本,通过领先的智能文档处理技术,对复杂文档中的版式、布局和元素进行精准解析及结构化处理,为大模型提供可靠、可信的语料数据。
一、突破复杂版面解析难题,降低大模型“幻觉”风险
在专业领域,如医疗、教育、金融等,大模型需要不断“吸收”正确的专业知识,才能应对实际应用问题。然而,专业文档通常版式复杂,包含表格、图表、公式等多种元素,解析难度极大。例如,金融财报中的密集表格和段落、国家标准文件中的复杂公式等,一个符号的解析失误,都有可能导致大模型在实际应用中造成无法估量的损失。
合合信息“大模型加速器2.0”针对复杂版面的理解、表格及图表的处理能力实现了重大突破。该技术能够按照人类正常的阅读顺序扫描文档结构,并根据物理与语义信息划分标题、段落、表格和图表等内容块,确保划分的文本块是完整和独立的语义单元,避免页码分割等形式的干扰。
以跨页长表格为例,传统解析技术容易将其误认为多个独立表格,进而输出错误信息。而“大模型加速器2.0”的文档解析引擎能够自动合并跨多页表格,帮助大模型理解表头和跨页数据的对应关系,从而减少“AI幻觉”。
二、大模型加速器2.0核心升级功能
1. 文档解析能力全面升级
精准处理复杂文档元素:可精准识别上千种文档中的无线表、跨页表格、合并单元格、密集表格、手写字符、公式等行业难点。
解析稳定率提升至99.99%:通过优化算法和模型,解析稳定率显著提高,确保大模型获取的数据准确无误。
处理速度大幅提升:单页处理耗时较行业可比产品降低超过30%,助力大模型高效处理海量文档。
2. 图表解析与逆还原功能
支持十余种专业图表类型:包括饼图、折线图、柱状图、雷达图、散点图等,满足各行业图表解析需求。
智能提取关键信息:可提取图表中的关键数据点、坐标轴信息、图例说明等,并将其转化为大模型可理解的结构化数据。
降低信息遗漏/错误采集风险:通过精准解析和结构化还原,确保大模型获取的数据完整、准确。
3. 赋能个性化行业知识库构建
支持多格式文档秒级处理:包括PDF、Doc、PNG等十余种格式,满足各行业文档处理需求。
内容溯源功能:可对文档内容进行溯源,提升大模型问答可靠性,便于信息复核。
加速多领域落地应用:助力大模型在医疗、制造、物流、零售、教育、金融等多领域的落地应用,提升行业效率。
实测效果
官方链接:https://www.textin.com/?from=0320xpkx-pr-kol,点击注册即可。
专属优惠:现在注册会送1000次文档解析权限,200次docflow权益(2周使用权益)
识别论文
作为一名AI算法工程师,阅读论文是工作中需要做的,下面我演示如何使用TextIn 2.0识别论文。
然后,通过点击上传文件,也可以拖拽等方式,将文件传到平台,如下图:
识别的论文内容:
表格识别:
公式识别:
图片识别:
如果识别的信息有问题,或者格式有问题,可以点击“编辑”。没有问题可以点击“导出结果”就可以导出Markdown格式的论文,方便后续的翻译。
如果需要Json格式,可以点击JSON,然后选择“导出结果”,如下图:
识别手写字体
手写体比较难识别,特别是像我这种写字比较丑的,而且还是写的数学公式,如下图:
这是组合数学的非齐次方程的求解,从识别结果上来看,识别还是很精准的。
无线表格识别
无线表格识别比较复杂,我们测试一下无线表格的识别,如下图:
高级功能
在上一节已经向大家展示了基础的应用,这里还有有高级功能,比如切边矫正、去水印、图表识别等功能。如下图:
切边矫正
开启切边纠正,然后,点击确定。然后就可以对倾斜的图片做纠正,如下图:
去水印
开启去水印功能,然后就可以去除文档中的水印,如下图:
去除水印后的结果,以及识别结果。
图表解析
开启图表解析,然后,输入图片,就可以将图表转为表格,如下图:
四、应用场景
“大模型加速器2.0”的先进功能使其在众多应用场景中展现出显著优势:
金融行业:可精准解析财报、年报中的复杂表格和公式,助力大模型进行财务分析和风险评估。
教育行业:可解析教材、论文中的图表和公式,支持学科知识库建设和智能审阅。
医疗行业:可处理病历、研究报告中的复杂文档元素,助力大模型进行医学研究和诊断支持。
此外,通过开源知识库组件,“大模型加速器2.0”还助力开发者根据自身需求快速构建个性化行业知识库,进一步拓展大模型的应用边界。
总结
合合信息“大模型加速器2.0”的发布,标志着大模型在复杂文档解析方面取得了重要进展。通过破解复杂版面和图表解析难题,该技术为大模型提供了更加可靠、可信的语料数据,助力其在各行业应用中更加“靠谱”。未来,随着技术的持续优化迭代,“大模型加速器2.0”有望在更多领域展现出更大的价值。.