最大似然估到底怎么来的-Note

离散最大似然估计:

用样本概率去估计总体分布概率,不一定具有准确性。

假设有一个箱子里有两种小球,

取出的概率分别为θ和1-θ

在一堆小球中抽出了3个1号球和2个2号球。

其中对于每一组数据的概率:

\huge \Huge L(\varTheta)=\varTheta^{3}(1-\varTheta)^{2}

因为之前随机取出的一组数据的分布就是这个分布,则很可能出现一种情况:

相比于该所有样本的分布来说,

随机拿出的一组数据很可能就是这所有样本分布的最基础的分布,也就是说我随便取出来的数据分布很可能就是所有样本的整体分布情况,举个例子:

 该随机取出的样本数据的分布很有可能就是真实的分布情况,

最大似然估计即认为取出这种分布的概率是最大的,

因为我随便一取就是这个分布,所以这种分布情况可能是出现概率最大

【所以最大似然估计可能不准确】

即求该分布出现概率L(θ) 最大时的θ的值

直接求导不好求,先取对数

\huge ln(\varTheta)=3ln(\varTheta)+2ln(1-\varTheta) 

求导取0点:

\huge \frac{d_{lnL(\varTheta)}}{d_{\varTheta}}=\frac{3}{\varTheta}-\frac{2}{1-\varTheta}=0

\huge \hat{\varTheta}=\frac{3}{5}

所以最大似然估计分布中θ可能为3/5

 连续最大似然估计:

若已知概率分布函数f(xi),则可计算出最大似然函数:若x~μ(0,a),a未知。

\huge \huge L(a) = f(x_{1})....f(x_{n}) =\frac{1}{a^{n}}

 若出现求导无法求解最值

\huge \huge \frac{\varphi ln(L(a))}{\varphi a} =-\frac{n}{a}<0 

 则要满足概率最大,且该似然函数单调递减,a越大概率掉的越慢 ,必须取最大值的x,因此:

 \huge \huge \hat{a} = max\{​{x_{1},....,x_{n}}\}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值