如何使用 opencv 调用 yolov5 onnx 模型 ?

本文介绍了如何在C++和Python中利用OpenCV接口调用YOLOv5的ONNX模型进行目标检测。通过详细步骤,展示了如何加载模型并应用于实际图像,实现人工智能的目标检测功能。
摘要由CSDN通过智能技术生成

如何使用 opencv 调用 yolov5 onnx 模型 ?
rtx3090 24G release 90 fps by use yolov5n
请添加图片描述

rtx3090 24G release 20 fps by use yolov5s
请添加图片描述

#include <fstream>
#include <string>
#include <vector>
#include <opencv2/opencv.hpp>

/*!
 * use ONNX model
 * */
class YoloV5
{
public:
	struct Data{
		int classIndex;
		float confidence;
		cv::Rect box;
	};

	bool init(const std::string & model,bool isUseGPU = true) {
		try{
			net = cv::dnn::readNetFromONNX(model);
			if(isUseGPU) {
				net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
				net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);
				std::cout << "SET DNN_BACKEND_CUDA & DNN_TARGET_CUDA" << std::endl;
			}else {
				net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);
				net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
				std::cout << "SET DNN_BACKEND_OPENCV & DNN_TARGET_CPU" << std::endl;
			}
		}catch (const cv::Exception &e){
			std::cerr << e.what() << std::endl;
			return false;
		}
		return true;
	}

	void detect(cv::Mat & frame,const std::vector<std::string> &labels,std::vector<YoloV5::Data> &output,float confidenceThreshold
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值