m基于Berlekamp-Massey钱搜索算法的BCH译码误码率matlab仿真

目录

1.算法仿真效果

2.算法涉及理论知识概要

3.MATLAB核心程序

4.完整算法代码文件


1.算法仿真效果

matlab2022a仿真结果如下:

2.算法涉及理论知识概要

      BCH编译码是一种纠错能力强,构造简单的信道编译码。BCH编译码的生成多项式可以由如下的式子表示:

  

①BCH码是一种纠错码、线性分组码、循环码。

②需要传输信息位数:k

③纠错能力:t

④总码长(信息位+监督位):n

⑤n的长度满足n=2^m – 1时生成的为本原BCH码;n的长度为2^m – 1的因子时为非本原BCH码

(如n=15,n=31,n=63时为本原BCH码;n=21(可被63整除)等时为非本原BCH码)

⑥此外还有加长BCH码和缩短BCH码。

⑦具体的BCH码通常用BCH(n,k)码来表示。

加长BCH码和缩短BCH码:
因为本原BCH码和非本原BCH码要求了n的长度,但很多情况下我们想要的码长并不满足n=2^m – 1或其因子。这时候就需要加长BCH码和缩短BCH码。

(1)缩短BCH码

BCH(50,32)码是扩展域GF(2^6)上BCH(63,45)码的缩短码。BCH(50,32)码和BCH(63,45)码的区别与联系:

①两者纠错能力相同,生成多项式相同。

②缩短码的实现只需要在编译码时在高位上补0,从k = 32凑到k = 45即可。

(2)加长BCH码

在本原BCH码或非本原BCH码的生成多项式中乘因式(x+1),可以得到加长BCH码(n+1,k),加了一个校验位。

  编码之后的码字包含信息字节和校验字节,其表达式如下所示:

         BCH译码过程主要通过计算伴随式sj得到错误位置多项式,然后通过chein算法计算错误位置多项式的根,从而确定错误位置数。并最终由错误位置数得到错误值以及错误图样E(x),最后通过R(x)- E(x)= C(x)进行纠错。


 

3.MATLAB核心程序

%begin decoding
for j=1:nwords
    rec_data=rec_data2((j-1)*n+1:(j-1)*n+n);
    syndrome=gf(zeros(1, 2*t), m);
    for i=1:n,
        syndrome=syndrome.*alpha_tb+rec_data(n-i+1);
    end;
    %imba
    lambda = gf([1, zeros(1, t)], m);
    lambda0= lambda;
    b=gf([0, 1, zeros(1, t)], m);
    b2 = gf([0, 0, 1, zeros(1, t)], m);
    k1=0;
    gamma = one;
    delta = zero;
    syndrome_array = gf(zeros(1, t+1), m);

    if(simplified == 1) 
        for r=1:t,
            r1 = 2*t-2*r+2;
            r2 = min(r1+t, 2*t);
            num = r2-r1+1;
            syndrome_array(1: num) = syndrome(r1:r2);
            delta = syndrome_array*lambda';
        
            lambda0 = lambda;
            lambda = gamma*lambda-delta*b2(2:t+2);
        
            if((delta~= zero) && (k1>=0))
                b2(3)=zero;
                b2(4:3+t) = lambda0(1:t);
                gamma = delta;
                k1 = -k1;
            else
            b2(3:3+t) = b2(1:t+1);
            gamma = gamma;
            k1=k1+2;
            end
            joke=1;
        end
    else
        for r=1:2*t,
            r1 = 2*t-r+1;
            r2 = min(r1+t, 2*t);
            num = r2-r1+1;
            syndrome_array(1:num) = syndrome(r1:r2);
            delta = syndrome_array*lambda';

            lambda0 = lambda;
            lambda = gamma*lambda-delta*b(1:t+1);

            if((delta ~= zero) && (k1>=0))
                b(2:2+t)=lambda0;
                gamma = delta;
                k1=-k1-1;
            else
                b(2:2+t) = b(1:t+1);
                gamma = gamma;
                k1=k1+1;
            end   
            joke=1;
        end
    end

    %inverstable
    inverse_tb = gf(zeros(1, t+1), m);
    for i=1:t+1,
        inverse_tb(i) = alpha^(-i+1);
    end;

    %chien's search
    lambda_v = zero;
    accu_tb=gf(ones(1, t+1), m);
    for i=1:n,
        lambda_v=lambda*accu_tb';
        accu_tb = accu_tb.*inverse_tb;
        if(lambda_v==zero)
            error(1,n-i+1)=1;
        else
            error(1,n-i+1)=0;
        end
    end
    found = find(error(1,:)~=0);
    for i=1:length(found)
        location=found(i);
        if location <= k;
            rec_data(n-location+1)=rec_data(n-location+1)+one;
        end
    end
    decoded_data((j-1)*k+1:(j-1)*k+k)=rec_data(n-k+1:n);
end

%decoded_data;
error=0.;
for i=1:length(message)
    if message(i)~=decoded_data(i)
        error=error+1;
    end
end
ber = error/length(message);
14_047_m

4.完整算法代码文件

V

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: Berlekamp-Massey算法是一种线性复杂度算法,用于在一个序列中求出最短的线性递推序列。它可以用来检测线性级别的纠错码,并在检测到错误时纠正这些错误。该算法于1967年由Elwyn Berlekamp和James Massey首先提出。 ### 回答2: Berlekamp-Massey算法是线性递推序列的一个求解算法,主要用于加密算法、编码和错误校验码等。 对于一个由$a_0, a_1, a_2, ..., a_n$组成的序列,如果它是一个线性递推序列,则存在$f(x)=f_0+f_1x+f_2x^2+...+f_nx^n$和$g(x)=g_0+g_1x+g_2x^2+...+g_nx^n$满足以下条件: 1. $f(x)a_n+f_1(x)a_{n-1}+f_2(x)a_{n-2}+...+f_n(x)a_0=0$ 2. $f(x)g(x)=1+0x+0x^2+...+0x^{2n}$ 其中$f(x)$和$g(x)$都是多项式,系数都属于$GF(2)$域,即所有系数都为$0$或$1$。 Berlekamp-Massey算法的核心思想是通过不断更新推导出$f(x)$多项式,从而确定序列是否为线性递推序列。具体操作如下: 1. 初始化$f(x)=a_0$和$g(x)=1$ 2. 设$i=0$,继续下面的步骤。 3. 如果$f(x)$使得$f(x)a_i+f_1(x)a_{i-1}+f_2(x)a_{i-2}+...+f_i(x)a_{i-i}=0$,则跳过下一步。 4. 否则更新$f(x)$和$g(x)$为:$f(x)=f(x)-f_i(x)x^{i-ld}$,$g(x)=g(x)+f_i(x)x^{i-ld}$,其中$ld$是最低位的非零项指数。 5. 如果$i$等于序列长度$n$,则停止,否则将$i$增加1,返回步骤3。 当算法执行结束后,如果$deg(f(x))<n$,则序列是线性递推序列。否则,序列不是线性递推序列。 Berlekamp-Massey算法具有高效的时间复杂度和空间复杂度,并且能够在有限时间内判断序列是否为线性递推序列。由于其可靠性和适用性,该算法在加密、编码、校验等方面得到广泛应用。 ### 回答3: Berlekamp-Massey算法是一种线性复杂度扫描算法,用于寻找给定有限域上的线性递推序列的最短线性递推关系。在密码学、纠错码、伪随机序列等应用中有着广泛的应用。 该算法的基本思想是利用一个长度为m的寄存器序列和一个长度为m的系数序列,去逐步生成原序列,通过比较原序列和生成序列之间的差异,逐步解决递推关系。当序列长度超过m时,就可以使用修改寄存器序列和系数序列来更新序列。在任意时刻,算法都会保持当前序列前r个元素的线性关系,直到找到整个递推式。因此,它可以通过线性时间求解整个递推式。 Berlekamp-Massey算法对于极大伪随机序列具有特别的重要性,因为它可以判断一个序列是否为线性复杂度生成,并且可以通过线性时间求出其线性递推关系。具体来说,一个序列为线性复杂度生成当且仅当它的线性递推关系的位数达到了序列的长度。在密码学中,这意味着一个暴力破解程序所需要的运算次数会达到指数级。因此,一些密码学应用需要使用Berlekamp-Massey算法对生成的伪随机序列进行测试,以保证其没有线性递推关系,从而更好地保证密码的安全性。 总的来说,Berlekamp-Massey算法是一种重要的算法,在密码学和其他应用中都有广泛的应用和重要性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我爱C编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值