m基于深度学习的OFDM通信系统频偏估计算法matlab仿真

目录

1.算法仿真效果

2.算法涉及理论知识概要

2.1 OFDM系统模型

2.2 基于DNN的频偏估计方法

3.MATLAB核心程序

4.完整算法代码文件获得


1.算法仿真效果

matlab2022a仿真结果如下:

训练曲线:

误码率曲线:

2.算法涉及理论知识概要

        正交频分复用(OFDM)是一种高效的无线通信技术,广泛应用于各种无线通信系统。然而,OFDM系统对频率偏移非常敏感,频偏会导致子载波间的正交性丧失,进而产生严重的性能下降。传统的频偏估计方法通常基于导频或者循环前缀,但在低信噪比或者多径环境下性能较差。近年来,深度学习(DL)在无线通信领域的应用受到了广泛关注。

2.1 OFDM系统模型

        OFDM系统的基本原理是将高速数据流通过串并转换分配到多个低速子载波上进行传输。假设系统有N个子载波,第k个子载波上的符号为Xk,经过逆傅里叶变换(IFFT)后得到时域信号xk。为了对抗多径效应,通常在符号前添加循环前缀(CP)。接收端去除CP后,进行傅里叶变换(FFT)恢复出频域信号Yk。在理想情况下,Yk应该等于Xk乘以信道响应Hk,但由于频率偏移、噪声等因素的影响,实际接收到的信号会有偏差。

2.2 基于DNN的频偏估计方法

       本文提出的基于DNN的频偏估计方法的基本思想是利用神经网络来学习从接收信号中提取频偏信息。具体来说,我们将接收到的时域信号xk作为神经网络的输入,输出为估计的频偏值。神经网络的结构可以根据具体的应用场景进行优化设计。

假设OFDM符号周期为Ts,子载波间隔为Δf = 1/Ts。接收端收到的时域信号可以表示为:

r(t) = e^(j2πΔft) * s(t - τ) + n(t)

      其中s(t)是发送的OFDM符号,τ是时间偏移,n(t)是加性高斯白噪声(AWGN)。经过FFT后,第k个子载波上的接收信号可以表示为:

Rk = e^(j2πkΔfτ) * Sk * Hk + Nk

        其中Sk是发送的第k个子载波上的符号,Hk是第k个子载波上的信道响应,Nk是第k个子载波上的噪声。从上述公式可以看出,频偏Δf和时间偏移τ都会导致相位旋转,进而影响接收信号的准确性。因此,频偏估计是OFDM系统中的一个关键问题。

        为了从接收信号中学习频偏信息,我们设计了一个深度神经网络模型。输入层接收时域信号xk,经过多个隐藏层的处理后,输出层输出估计的频偏值。隐藏层的激活函数可以选择ReLU、sigmoid等常用的函数。为了优化模型的性能,可以使用梯度下降等优化算法进行训练。此外,还可以使用正则化、dropout等技术来防止过拟合。

3.MATLAB核心程序

.....................................................................
for n = 1:length(EbN0dB)
    n
    % 获取当前的Eb/N0值  
    snr = EbN0dB(n);
    % 初始化比特错误数量和计时器
    berrors1 = 0;
    berrors2 = 0;
    berrors3 = 0;
    Fberrors2 = 0;
    Fberrors3 = 0;
    tic;
    for mc = 1:MC% 进行Monte Carlo模拟

        load dl4.mat
        %调用深度学习模型进行频偏估计
...........................................

        yr02   = (exp(-1*1i*2*pi*offset*(0:length(yr0)-1)/nFFT)).*yr0;
        % 接收端处理  
        yr2 = yr02(nCP+1:end);% 去循环前缀 
        yr2 = (nDSC/sqrt(nFFT))*fftshift(fft(yr2,nFFT));% FFT变换  
        yr2 = yr2 > 0; % 硬判决解调 
        berrors2 = berrors2 + length(find((yr2-x)~=0)); % 计算比特错误数量  
    end
    toc;
   BER1(n) = berrors1/(nFFT*MC);
   BER2(n) = berrors2/(nFFT*MC);
end
    
 
figure;
semilogy(EbN0dB,BER1,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on; 
semilogy(EbN0dB,BER2,'-rs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.6,0.8]);
hold on; 
hold on; 

grid on; 
xlabel('Eb/N0');
ylabel('BER1');
legend('没频偏估计','基于深度学习的频偏估计');
0X_034m

4.完整算法代码文件获得

V

  • 22
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于深度学习OFDM系统信道估计算法是一种利用深度学习技术来进行信道估计的方法。在传统的OFDM系统中,由于信道的复杂性和时变性,需要进行准确的信道估计以提高系统性能。而深度学习算法通过学习大量的数据样本,可以自动地从输入数据中提取特征,并建立一个模型来进行信道估计。 具体而言,基于深度学习OFDM系统信道估计算法可以分为以下几个步骤: 1. 数据准备:首先,需要准备一组已知的OFDM符号和对应的接收信号样本。这些样本可以通过仿真或实际采集得到。 2. 网络设计:接下来,需要设计一个适合信道估计任务的深度学习网络结构。常用的网络结构包括卷积神经网络(CNN)、循环神经网络(RNN)和变换器(Transformer)等。 3. 数据预处理:在输入数据进入网络之前,需要对其进行预处理。常见的预处理操作包括归一化、去噪和数据增强等。 4. 网络训练:使用准备好的数据样本,将其输入到网络中进行训练。训练过程中,通过最小化预测输出与真实输出之间的误差来优化网络参数。 5. 网络评估:训练完成后,需要对网络进行评估。可以使用一组独立的测试数据来评估网络的性能,比如计算均方根误差(RMSE)或误码率(BER)等指标。 6. 信道估计:当网络训练完成并通过评估后,可以将接收到的未知OFDM符号输入到网络中进行信道估计。网络将输出对应的信道估计结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我爱C编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值