题目
大意是求一条通路中所有相邻两个结点的最大值,该最大值又是所有通路中的最小值。上图一目了然。
题目链接: link.
图解胜于一切苍白的文字
图片:
结点1通往结点3的路径有:
- 1->2->3相邻两点间最大距离是 4 ;
- 1->4->3相邻两点间最大距离是 5;
- 1->4->6->3相邻两点间最大距离是 3;
- 1->5->4->3相邻两点间最大距离是 5;
- 1->5->4->6->3相邻两点间最大距离是 2;
故所有通路中所有相邻两个结点最大值的最小值是 通路5中:2
思路
这道题是变相的求源节点 **(本题为结点1)**到任意结点的所有路径上相邻两结点的最大距离的最小值。即动态规划的最有子解。
可以利用求最短路径的方法求解该问题。
Dijkstra(迪杰斯特拉算法)
#include<iostream>
#include<string>
#include<vector>
#include<set>
#include<algorithm>
#include<iomanip>
#include<cmath>
using namespace std;
const int MAX = 0x3f3f3f3f;
double Dist(vector<int> const& a, vector<int> const& b) {
double t;
t = sqrt(pow((double)(a[0] - b[0]), 2) + pow((double)(a[1] - b[1]), 2));
return t;
}
int main() {
int n;
int inc(0);
while (cin >> n && n) {
vector<double> dist(n + 1, MAX);
vector<bool> visited(n + 1, false);
vector<vector<int> > vec(n + 1, vector<int>(2, 0));
for (int i = 1; i <= n; i++) {
cin >> vec[i][0] >> vec[i][1];
}
dist[1] = 0;
for (int i = 2; i <= n; i++) {
dist[i] = Dist(vec[1], vec[i]);
}
visited[1] = true;
int u(1);
double maxmin(-1);
for (int m = 0; m < n;m++) {
double mindist = MAX;
for (int i = 2; i <= n; i++) {
if ((!visited[i]) && mindist > dist[i]) {
mindist = dist[i];
u = i;
}
}
visited[u] = true;
for (int j = 2; j <= n; j++) {
if (!visited[j]) {
dist[j] = min(dist[j], max( Dist(vec[u], vec[j]),dist[u]));
}
}
}
cout << fixed << setprecision(3);
cout << "Scenario #" << ++inc << endl;
cout << "Frog Distance = " << dist[2] << endl;
cout << endl;
}
system("pause");
return 0;
}
Bellman-Ford(贝尔曼-福特算法)
#include<iostream>
#include<string>
#include<vector>
#include<set>
#include<algorithm>
#include<iomanip>
#include<cmath>
using namespace std;
const int MAX = 0x3f3f3f3f;
double Dist(vector<int> const& a, vector<int> const& b) {
double t;
t = sqrt(pow((double)(a[0] - b[0]), 2) + pow((double)(a[1] - b[1]), 2));
return t;
}
void relax(vector<vector<double> >& edge, int i, int j, vector<double> &dist) {
if (dist[j] > max(dist[i], edge[i][j]))
dist[j] = max(dist[i], edge[i][j]);
}
int main() {
int n;
int inc(0);
while (cin >> n && n) {
vector<double> dist(n + 1, MAX);
vector<vector<double> > edge(n+1,vector<double>(n+1));
vector<vector<int> > vec(n + 1, vector<int>(2, 0));
for (int i = 1; i <= n; i++) {
cin >> vec[i][0] >> vec[i][1];
}
dist[1] = 0;
for (int i = 1; i <= n; i++) {
for(int j=1;j<=n;j++)
edge[i][j] = Dist(vec[i], vec[j]);
}
for (int i = 1; i <= n; i++) {
for (int s = 1; s <= n; s++) {
for (int t = 1; t <= n; t++) {
relax(edge, s, t,dist);
}
}
}
cout << fixed << setprecision(3);
cout << "Scenario #" << ++inc << endl;
cout << "Frog Distance = " << dist[2] << endl;
cout << endl;
}
system("pause");
return 0;
}
Floyd(弗洛伊德算法)
#include<iostream>
#include<string>
#include<vector>
#include<set>
#include<algorithm>
#include<iomanip>
#include<cmath>
using namespace std;
const int MAX = 0x3f3f3f3f;
double Dist(vector<int> const& a, vector<int> const& b) {
double t;
t = sqrt(pow((double)(a[0] - b[0]), 2) + pow((double)(a[1] - b[1]), 2));
return t;
}
int main() {
int n;
int inc(0);
while (cin >> n && n) {
vector<vector<double> > dist(n + 1, vector<double>(n+1,MAX));
vector<bool> visited(n + 1, false);
vector<vector<int> > vec(n + 1, vector<int>(2, 0));
for (int i = 1; i <= n; i++) {
cin >> vec[i][0] >> vec[i][1];
}
for (int i = 1; i <= n; i++) {
for(int j=1;j<=n;j++)
dist[i][j] = Dist(vec[i], vec[j]);
}
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {
if (i == k) continue;
for (int j = 1; j <= n; j++) {
if (j == k) continue;
if (dist[i][j] > max(dist[i][k], dist[k][j])) {
dist[i][j] = max(dist[i][k], dist[k][j]);
}
}
}
}
cout << fixed << setprecision(3);
cout << "Scenario #" << ++inc << endl;
cout << "Frog Distance = " << dist[1][2] << endl;
cout << endl;
}
system("pause");
return 0;
}