重磅!Qwen3震撼发布,吊打DeepSeek和GPT。GitHub两小时狂揽1.6万Star

重磅发布,阿里云深夜发布了传言已久的Qwen3(通义千问3)系列大模型,一举拿下开源模型冠军。

阿里这次一共发布了8个模型,Qwen3-0.6B、1.7B、4B、8B、14B、32B,这6个都是Dense稠密模型。

还有两个重量级MoE模型,Qwen3-30B-A3B,和旗舰版的Qwen3-235B-A22B。MoE旗舰版Qwen3-235B-A22B在22B的激活参数下,性能与当前最先进的闭源模型Gemini 2.5 Pro、o1能力相当。

但其在部署效率方面取得重要突破,仅需4块H20显卡即可完成完整部署。相较于前代Qwen 2.5,Qwen 3整体能力提升明显,Qwen3-4B 这样的小模型也能匹敌 Qwen2.5-72B-Instruct 的性能。模型采用4步预训练和4步后训练,具有混合推理能力。

旗舰模型 Qwen3-235B-A22B 在代码、数学、通用能力等基准测试中,与 DeepSeek-R1、o1、o3-mini、Grok-3 和 Gemini-2.5-Pro 等顶级模型相比,表现出极具竞争力的结果。此外,小型 MoE 模型 Qwen3-30B-A3B 的激活参数数量是 QwQ-32B 的 10%,表现更胜一筹,甚至像 Qwen3-4B 这样的小模型也能匹敌 Qwen2.5-72B-Instruct 的性能。


仅发布2小时,GitHub星标数便突破1.6万,成为开发者关注的焦点。向世界展示了中国大模型的硬实力。

五大核心升级:Qwen3凭什么“以小搏大”?


1. 混合思考模式:快与慢的智慧平衡

Qwen3首次引入“思考模式”与“非思考模式”:

  • 思考模式

    :逐步推理,适合解决复杂问题(如数学证明、编程难题),输出严谨答案;

  • 非思考模式

    :快速响应,适用于简单任务(如问答、摘要生成),几乎“秒回”。
    用户可灵活切换模式,平衡推理质量与响应速度,甚至自定义思考预算,让模型更“聪明”也更“高效”。

2. 推理能力飞跃:小参数打败大模型
  • Qwen3-235B-A22B

    :在编程、数学、通用能力基准测试中,超越DeepSeek-R1、OpenAI o1/o3-mini等国际竞品;

  • Qwen3-4B

    :参数仅为Qwen2.5-72B的5.6%,但性能相当,真正实现“小身板,大能量”;

  • STEM与代码生成

    :在数学、代码等高难度领域,Qwen3甚至超越参数更大的Qwen2.5系列。

3. 多语言支持:119种语言无障碍沟通

Qwen3覆盖全球119种语言及方言,无论是中文、英文,还是小语种、方言,均具备理解、推理、生成能力,助力跨国协作与全球化场景落地。

4. Agent能力强化:MCP协议让模型“更聪明”

通过MCP(模型上下文协议),Qwen3可无缝集成外部数据源和工具,完成复杂任务(如数据分析、多步骤推理)。例如:

  • 结合天气API生成旅行建议;

  • 调用数据库生成财务报告。
    开发者可轻松构建智能Agent,让模型成为真正的“决策助手”。

5. 开源与部署:灵活适配各类场景

Qwen3在Hugging Face、ModelScope等平台开源,遵循Apache 2.0协议,支持本地部署工具(如Ollama、LMStudio)。开发者可结合SGLang、vLLM等框架,快速实现模型落地。

技术亮点:数据规模翻倍,训练策略革新


1. 预训练数据量翻三倍

Qwen3的预训练数据量从Qwen2.5的1800亿token激增至3600亿token,涵盖网络文本、PDF文档、合成数据(通过Qwen2.5-Math/Coder生成),尤其强化了数学、代码领域的数据质量。

2. 三阶段预训练+四阶段微调
  • 预训练

    :分阶段提升模型能力,从基础语言技能到长上下文处理;

  • 微调

    :通过思维链(CoT)冷启动、强化学习、模式融合等步骤,兼顾推理与快速响应能力。

3. MoE架构:激活参数更高效

Qwen3包含2个MoE(混合专家)模型:

  • Qwen3-30B-A3B

    :激活参数仅30亿(总参数300亿),性能却反超QwQ-32B(激活参数320亿);

  • 上下文长度

    :小模型支持32K,大模型支持128K,满足长文本处理需求。

Qwen3,定义下一代AI的“中国速度”

从数据规模到技术创新,从性能突破到开源生态,Qwen3再次证明了阿里云在大模型领域的深厚积累。无论是开发者还是企业,都能借助Qwen3的灵活性与强大能力,快速落地智能应用。

<think>嗯,用户之前问过关于多模态开源大模型的推荐,现在又具体问能理解图片的大模型。需要先回顾之前的回答,看看有没有重复的内容,避免冗余。之前提到的模型比如LLaVA、Qwen-VL、ImageBind、Video-LLaMA都是涉及图像理解的,可能需要更详细地展开这些模型在图片理解方面的能力。 用户可能的需求是什么?他们可能需要在项目中集成图像理解功能,比如图像描述、视觉问答、OCR或者特定领域的图像分析。用户可能关心这些模型的开源性、中文支持、硬件要求以及是否易于部署。 需要确保回答的结构清晰,分门别类,比如分为通用图文模型、中文优化、轻量级、视频理解等,这样用户可以根据自己的需求选择。同时,补充每个模型的特点,比如支持的模态、应用场景、性能指标等,帮助用户做出决策。 还要注意用户可能对商业授权有疑问,比如LLaMA系列需要申请,这点需要再次提醒。另外,是否提到训练资源技巧?之前回答中有这部分,可能需要简化,重点放在模型介绍上。 检查是否有最新的模型或更新,比如Qwen-VL是否有新版本?确保信息的时效性。另外,用户可能对模型的输入输出示例感兴趣,比如是否支持高分辨率图像,是否需要特定格式的输入。 最后,是否需要提供选型建议矩阵,帮助用户根据场景选择模型?之前的回答中有这样的表格,可能保留下来,但更聚焦在图片理解方面。确保语言口语化,避免技术术语过多,让不同层次的用户都能理解。</think>以下是当前主流的 **能够理解图片的开源大模型** 及其核心能力解析,涵盖图像描述、视觉问答、OCR、细粒度理解等场景: --- ### **一、通用图文交互模型** #### **1. LLaVA (Large Language and Vision Assistant)** - **开发团队**:微软 & 威斯康星大学 - **核心能力**: - **图像内容问答**(例如:`图中的动物是什么品种?它可能在做什么?`) - **复杂推理**(分析场景因果关系:`为什么这幅画让人感觉压抑?`) - **多模态对话**(支持多轮带图对话) - **技术架构**: ```mermaid graph LR A[输入图像] --> B(CLIP视觉编码器) B --> C{特征投影层} C --> D(Vicuna语言模型) D --> E[文本输出] ``` - **性能亮点**: - 在 ScienceQA 测试集准确率达 88.7%(超过 GPT-4) - 支持最高 1024×1024 分辨率输入 - **开源地址**:[GitHub - haotian-liu/LLaVA](https://github.com/haotian-liu/LLaVA) #### **2. Qwen-VL (通义千问视觉版)** - **开发团队**:阿里巴巴达摩院 - **中文场景优势**: - **中文OCR**:精准识别图像中的汉字(如古籍、手写体) - **区域指代理解**(例如:`用方框标出图片左下角的红色车辆`) - **功能示例**: ```python # 输入:图片 + "描述图中人物的穿着" # 输出:"图中男性穿着蓝色衬衫黑色西裤,手持公文包" ``` - **模型版本**: - 基础版(3B参数)适合快速部署 - Chat版(指令微调)支持复杂交互 - **开源地址**:[GitHub - QwenLM/Qwen-VL](https://github.com/QwenLM/Qwen-VL) --- ### **二、中文优化模型** #### **CogVLM** - **核心特性**: - **双语支持**:中英文视觉语言联合训练 - **细粒度理解**:可识别图像中的品牌logo、特定物体型号 - **实测案例**: - 输入故宫全景图 → 输出建筑风格分析与历史背景 - 输入电路板照片 → 识别元件型号并给出维修建议 - **硬件需求**:最低 16GB 显存(RTX 3090级别) #### **VisualGLM-6B** - **轻量化设计**: - 6B 参数可在消费级 GPU(如 RTX 3080)运行 - 支持 LoRA 微调(自定义行业数据集) - **应用场景**: - 电商产品图自动生成描述 - 医学影像辅助标注(需领域微调) --- ### **三、轻量化移动端模型** #### **MobileVLM (苹果优化版)** - **部署优势**: - **端侧运行**:支持 iPhone/iPad 实时推理(CoreML 框架) - **体积压缩**:INT8 量化后仅 1.2GB - **速度表现**: | 设备 | 延迟 | 支持功能 | |--------------|-------|------------------------| | iPhone 14 Pro| 380ms | 图像描述、简单问答 | | iPad M2 | 210ms | 多图对比分析 | --- ### **四、多模态扩展模型** #### **ImageBind (Meta AI)** - **跨模态特性**: - 将图像与 **音频/深度/热成像** 等模态关联 - 实现跨模态检索(例如:用鸟鸣声搜索对应鸟类图片) - **学术价值**:为多模态对齐提供通用嵌入空间 #### **Fuyu-8B (Adept AI)** - **工业设计优化**: - 直接处理 **图表截图** → 生成数据分析报告 - 理解界面截图并生成操作指令(如:`点击登录按钮`) --- ### **五、视频理解模型** #### **Video-LLaMA** - **时序分析能力**: - 解析视频中的动作连续性(如:`这段舞蹈包含几个关键动作?`) - 音画联合分析(如:`背景音乐如何影响观众情绪?`) - **技术架构**: - 分拆视觉编码器(处理帧序列)+ 音频编码器 - 通过跨模态对齐模块连接语言模型 --- ### **选型建议指南** | 需求场景 | 推荐模型 | 关键优势 | 硬件门槛 | |------------------|----------------|---------------------------|---------------| | 中文OCR/标注 | Qwen-VL | 汉字识别准确率高 | RTX 3090 | | 移动端集成 | MobileVLM | 苹果设备端实时运行 | iPhone/iPad | | 复杂视觉推理 | LLaVA-1.5 | 支持千像素高清图 | A100 | | 工业图表理解 | Fuyu-8B | 直接解析截图生成报告 | RTX 4090 | | 学术研究 | ImageBind | 多模态对齐理论验证 | 多卡GPU集群 | --- ### **实践建议** 1. **数据准备**: - 使用 `COCO Captions`(12标注图)或 `Flickr30k`(3.1图)作为基准数据集 - 中文场景可加入 `MUGE`(蚂蚁集团开源中文图文数据集) 2. **微调技巧**: - 采用 **BLIP-2 框架** 进行轻量微调(节省 50% 显存) - 对低分辨率模型使用 **Swin Transformer** 提升细节理解 3. **评估指标**: - **CIDEr**:衡量生成描述的语义相关性 - **SPICE**:评估场景图推理准确性 --- 以上模型均已开源,但需注意 **商业授权限制**(如 LLaMA 系列需申请许可)。建议从官方 GitHub 仓库获取最新版本,部分模型提供在线 Demo 可快速验证效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值