第五章 GPT模块配置

  由于GPT配置需要和Irq和Mcu进行配合设置(GPT可以由芯片外设中的GTM和GPT12实现,这次是以GTM为实现)。

1 GTM外设时钟配置

  首先需要对MCU组件进行配置,配置GTM的时钟,需要参照GTM的CMU时钟树。
在这里插入图片描述

  下图时钟树的CLS0_CLK为MCU(McuClockSettingConfig_0中的 McuSTMFrequency )fSTM;一般默认设置为100MHZ;
  MCU\GtmGlobalConfiguration\General中:
  GtmCmuGlobalClockNumerator 和 GtmCmuGlobalClockDenominator 为CMU全局时钟的分频系数;对应时钟树中的Global Clock Divider。
  GtmCmuFixedClockEnable 是否使能当前的FXCLK模块;对应GTM时钟树中的EN_FXCLK。
  GtmCmuFixedClockSel 是对FXCLK模块的时钟源进行选择;对应GTM时钟树中的FXCLK_SEL。可以选择全局时钟也可以灵活选择CMU_CLK0~7。
  GtmCmuConfigClock0Enable 是对Clock Sou

05-04
### Db-GPT 技术概述 Db-GPT 是一种基于大语言模型(LLM)的技术框架,专注于数据库操作、自然语言处理以及插件扩展能力。它不仅提供了强大的 Text2SQL 能力,还支持多种插件集成和跨平台交互功能[^1]。 #### 基础概念 Db-GPT 的核心目标是通过微调预训练模型实现更高效的 SQL 查询生成能力,并提供灵活的插件机制以适配不同的业务场景。其主要模块包括但不限于: - **DB-GPT-Hub**: 提供持续改进的 Text2SQL 效果,适用于复杂查询需求。 - **DB-GPT-Plugins**: 支持 Auto-GPT 兼容的插件生态,便于开发者快速接入第三方服务。 - **DB-GPT-Web**: 实现多端交互式的前端界面设计,方便用户实时调试与监控。 #### 部署指南 对于希望本地化运行 Db-GPT 的用户而言,可以参考以下方法完成环境配置: ##### 下载依赖模型 如果选用 Vicuna-13B 模型作为底层支撑,则需先获取该模型文件并存储至指定路径下。具体命令如下所示[^2]: ```bash cd /root/autodl-tmp/models git lfs clone https://huggingface.co/Tribbiani/vicuna-13b ``` 注意此过程可能占用较大磁盘空间,请提前确认设备容量满足条件。 ##### 启动服务 假设已完成必要组件安装之后,可通过官方文档进一步学习如何启动 Web 应用程序以及其他高级特性设置[^3]。 --- ### 示例代码片段展示 以下是简单的 Python 接口示例用于演示如何连接已部署好的 Db-GPT 服务器实例: ```python import requests def query_db_gpt(prompt): url = "http://localhost:8000/api/generate" payload = {"text": prompt} response = requests.post(url, json=payload).json() return response['result'] if __name__ == "__main__": result = query_db_gpt("列出销售额最高的前五名产品") print(result) ``` 以上脚本实现了向 Db-GPT 发送请求并将返回的结果打印出来。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值