linux-ubuntu20网卡驱动安装AX201

参考内容:
【Ubuntu18.04 解决蓝牙wifi 之ax201无线网卡驱动安装】

联想拯救者Y7000P2023 Ubuntu20.04网卡驱动AX211安装

幻14 ubuntu20.04 AX210驱动安装

记录ubuntu安装AX201 AX211网卡驱动

官网下载相应的驱动:https://www.intel.com/content/www/us/en/support/articles/000005511/wireless.html

联想拯救者Y7000P2023 Ubuntu20.04网卡驱动AX211安装

新装ubuntu系统无法联网?Unbuntu20.04有线&无线网卡驱动安装

Ubuntu内核版本5.10以下安装Intel AX210的WIFI驱动

Y9000X 2022 i7-12700H+3060 安装AX211网卡驱动, 笔记本网卡AX211无法找到wifi, 及WiFi无列表解决方案

sudo apt install libssl1.1

请添加图片描述

实测安装上了AX201的驱动,从无到有。内核直接使用最新的即可,其余安装部分都与上述教程相同

我的拯救者的笔记本电脑的ubuntu18可以使用wifi了,但是台式机的A201都无法使用(ubuntu18)。看了很久,感觉有点像是安全启动的问题。再拓展一下安装驱动知识的一些内容。

首先万不得已都会去安装这样一个包:
https://github.com/intel/backport-iwlwifi
是intel官方的driver,一般这个能编译通过过后wifi最后都可以使用。

git clone https://github.com/intel/backport-iwlwifi.git
cd backport-iwlwifi
cd iwlwifi-stack-dev
sudo make defconfig-iwlwifi-public
sudo make
sudo make install

但是想编译过这个东西应该并不容易。
如果出现问题(一般都会出现问题)
执行sudo make defconfig-iwlwifi-public命令时,若提示make: *** 没有规则可制作目标“defconfig-iwlwifi-public”。 停止。,参考以下链接安装Ubuntu内核源码:
make: *** 没有规则可制作目标“defconfig-iwlwifi-public”。 停止
然后重新回去sudo make defconfig-iwlwifi-public
如果成功了那就快了。如果不行那就只能放弃了

同时也包括通过去网站下载的:
https://www.intel.com/content/www/us/en/support/articles/000005511/wireless.html

sudo apt install linux-firmware
然后去下载ax201无线网卡iwlwifi-qu-48.13675109.0.tgz驱动下载
cd ~/Downloads
tar -zxvf iwlwifi-qu-48.13675109.0.tgz
cd iwlwifi-Qu-48.13675109.0
sudo cp iwlwifi-Qu-*-48.ucode /lib/firmware

这里如果复制了过后没有反应的话,那就说明还是由于安全启动没有正常关闭的问题了。

但是关闭了还是没有用
https://blog.csdn.net/weixin_44012124/article/details/131518708

https://blog.csdn.net/sinat_38017370/article/details/128183415?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522172094284016800182779939%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=172094284016800182779939&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduend~default-1-128183415-null-null.142v100pc_search_result_base2&utm_term=r8125&spm=1018.2226.3001.4187

sudo add-apt-repository ppa:hardkernel/ppa
sudo apt install realtek-r8125-dkms

换了这个驱动还是不行啊!!!
暂时放弃了

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白云千载尽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值