一、一元函数的导数与微分
一元函数的导数是一类特殊的函数极限,也是一类 \(\frac{0}{0}\) 型极限(函数增量与自变量增量之比当自变量趋于零时的极限)。
在几何上函数的导数即曲线的切线的斜率。导数在几何上的应用就是求曲线的切线或法线的斜率。
在力学上路程函数的导数就是速度。
函数的可导性是比连续性更强的性质,因为可导必连续。
求一元函数的导数与微分的方法是相同的,因此把求导数与求微分的法则统称为微分法则
。
1、导数的定义
(1)定义1:$ f(x) 在 x_0 处可导 $
设函数 $ y=f(x) 在 x_0 $ 的某邻域有定义,若下面极限存在
其中 $\triangle y=f(x_0 + \triangle x) - f(x_0) ,则称 f(x) 在 x_0 可导,并称这个极限为 f(x) 在 x_0 处的 $ 导数(或微商)
,记作 $ f'(x_0),y'(x_0) 或 \frac{dy}{dx} |{x=x_0},\frac{df(x)}{dx} | 等。 $
令 $ x=x_0 + \triangle x,f'(x_0) 又可改写成 f'(x_0)= \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}。 $
(2)定义2:$ f(x) 在 x_0 处左右可导 $
设函数 $ y=f(x) 在 x_0 处存在如下单侧极限: $
其中 $ \triangle y = f(x_0+ \triangle x)-f(x_0),则分别称为 f(x) 在 x=x_0 $ 左、右可导
,该极限分别称为 $ f(x) 在 x=x_0 的 $ 右、左导数
,记为 $ f'+(x_0),f'_(x_0) 或 y'+(x_0),y'_(x_0)。 $
(3)几何意义
$ 函数 y=f(x) 在 x=x_0 处的导数 f'(x_0) 是曲线 y=f(x) 在点 (x_0, f(x_0)) 处切线的斜率。 $
切线方程:$ y-y_0=f'(x_0)(x-x_0) $
法线方程:$ y-y_0=- \frac{1}{f'(x_0)}(x-x_0),\quad (f'(x_0) \neq 0 时) $
(4)力学意义
质点作为直线运动,t时刻质点的坐标为 $ x=x(t),x'(t_0) 是 t=t_0 时刻的速度。 $速度
(描述质点运动快慢和方向的物理量,等于位移对时间的微分):$ v= \frac{ds}{dt} $,其中v是速度矢量、s是位移矢量、t是时间。加速度
(平均加速度的极限,也叫瞬时加速度):
单位是米每二次方秒,符号为 $ m/s^2 $。加速度(acceleration)是速度对时间的变化率,表示速度变化的快慢。加速度矢量等于速度矢量对时间的导数,其方向沿着速端图的切线方向并指向轨迹的凹侧。
(5)单侧可导和双侧可导的关系
定理:$ f(x) 在 x_0 可导 \iff f(x) 在 x_0 $ 左右导数均存在且相等,即
2、可微的定义
定义:设函数 $ y=f(x),当自变量 x=x_0 有增量 \triangle x 时,若存在与 \triangle x 无关的常数 A(x_0),使得函数的增量 \triangle y=f(x_0+\triangle x)-f(x_0) 可表为 $
则称 $ f(x) 在 x=x_0 处 \color{red}{可微} ,A(x_0) \triangle x 称为 f(x) 在 x=x_0 处的 \color{red}{微分} ,记为 $
其中 $ o(\triangle x) 是 \triangle x \to 0 时比 \triangle x 高阶的无穷小量。 $
函数 $ y=f(x) 在 x=x_0 处的微分是该函数在 x=x_0 处函数增量的线性主要部分 $
(1)可微、可导及连续之间的关系
定理:f(x) 在 $ x_0 可导 \iff f(x)在x_0 可微 \overset{\Rightarrow}{\nLeftarrow} f(x)在 x=x_0 连续。 $
- 可导和可微是等价的概念;
- 可导和可微是连续的充分非必要条件。如:$ y=|x| 与 y= x^{\frac{1}{3}} 在 x=0 处连续,但不可导。 $
(2)微分的几何意义
$ \triangle y = f(x_0 + \triangle x)-f(x_0) 是曲线 y=f(x) 在点 x_0 处相应于自变量增量 \triangle x 的纵坐标 f(x_0) 的增量,微分 dy|_{x=x_0} 是曲线 y=f(x) 在点 M_0(x_0, f(x_0)) 处的切线相应于自变量增量 \triangle x 的纵坐标的增量。 $
3、函数在区间上的可导性、导函数
$ 若 \forall x \in (a,b),f(x) 可导,则称 f(x) 在 (a,b) $ 内可导
。
$ 若 f(x) 在 (a,b)内可导,又 f(x) 在 x=a 处右可导,在 x=b 处左可导,则称 f(x) 在 [a,b] $ 可导
。
(1)导函数
$ 若 f(x) 在区间 I 可导,则 \forall x \in I,都对应着 f(x) 的一个确定的导数值,这就构成一个新的函数,叫做 y=f(x) 的导函数 \(,简称 `导数`,也叫 `一阶导数`。记作:\) y',f'(x),\frac{dy}{dx} 或 \frac{df(x)}{dx} $。
(2)二阶导数及高阶导数
$ 函数 y=f(x) 的导数仍是 x 的函数,把 y'=f'(x) 的导数,叫做 y=f(x) 的二阶导数,记作 y'' 或 y^(2),f''(x) 或 f^(2)(x) 或 \frac{d2y}{dx2} 等。 $
$ 函数 y=f(x) 的 n-1 阶导数的导数称为 y=f(x) 的 n 阶导数,记作 y(n),y(n)(x) 或 \frac{dny}{dxn}。 $
$ 函数 f(x) 有 n 阶导数也称 f(x) n 阶可导。 $
根据定义,若 $ f(x) 在 x_0 处 n 阶可导,则 f(x) 在 x_0 $ 某领域必具有一切低于 n 阶的导数
。
(3)二阶导数的力学意义
质点作直线运动,t 时刻的坐标为 $ x=x(t),则 x''(t_0) 是 t=t_0 $ 时刻的加速度
。
(4)奇偶函数的导数性质
设 $ f(x)在 I $ 上可导
,
- $ 若 f(x) 在 I 上为奇函数 \implies f'(x) 在 I 上为偶函数。 $
- $ 若 f(x) 在 I 上为偶函数 \implies f'(x) 在 I 上为奇函数。 $
若 f(x) 存在原函数,其特性:
- 奇函数的原函数为偶函数。
- 偶函数的原函数仅有一个奇函数。
(5)周期函数的导数性质
设 $ f(x) 在 X 上可导,以 T 为周期 \implies f'(x) 在 X 上也以 T 为周期。 $
- 周期函数的导函数是和原函数有相同周期的
周期函数
- 周期函数的原函数不一定是周期函数,如 $ f(x)=1+cosx 以 2 \pi为周期,F(x)=x+sinx则无周期。 $
二、按定义求导数及其适用情形
按定义求一元函数 $ y=f(x) 在某点 x=x_0 处的导数,就是求 \frac{0}{0} 型极限,即求: $
若 $ \triangle x \to 0 时,f(x+\triangle x)-f(x) 不是无穷小量,则 f'(x) 不存在。 $
1、按定义求导数适用的情形
(1)情形1
除了常数函数外还有某些基本初等函数得导数公式,如:$ (sinx)'=cosx,(lnx)'= \frac{1}{x} $ 等均按定义导出。(其他基本初等函数的导数公式可由这两个导数公式及求导法则导出)
(2)情形2
求导法则不能用的情形:如设 $ f(x)=(x-a) \varphi(x),\varphi(x) 在 x=a 处连续,试问 f(x) 在 x=a 处是否可导? $ 这里乘积的求导法则不适用。因为不知道 $ \varphi(x) 在 x=a $ 处是否可导。
(3)情形3
求某类分段函数在连接点处的导数。
2、利用导数定义求极限
设 $ f'(x) $ 存在,若所求极限可化为如下类型:
则按导数定义即是 \(f'(x)\)。
由数列极限与函数极限的关系可得到
三、求导法则
求导法则分如下几种情况:
- 导数四则运算法则
- 复合函数求导法则
- 幂指数函数求导
- 反函数求导
- 隐函数求导
- 参数式求导
- 变限积分求导
- 分段函数的求导
1、基本初等函数导数表(微分表)
(1)对数运算法则
(2)指数运算法则
2、导数与微分的四则运算法则
设 $ u(x)和v(x)在x处可导,则: $
设 $ f(x)和g(x)在x处可微,则: $
3、复合函数的导数和微分法则
定理:$ 设 \varphi(x)在 x 处可导,y=f(u) 在对应点 u= \varphi(x) 处可导,则复合函数 y=f(\varphi(x)) 在 x 处可导 且 \quad \frac{dy}{dx}= \frac{dy}{du} * \frac{du}{dx} \quad 或 \quad y'_x=y'_uu'_x \quad 或 \quad y'_x=f'(u)\varphi'(x)。 $
用微分表示 $ dy=f'(u)du $,其中 u
可以是自变量也可以是另一变量的可微函数————这就是一阶微分形式的不变性。
(1)多层复合函数
若是多层复合函数,则可 逐次
用复合函数求导法求它的导数。
如:$ y=f(u),u=g(v),v=h(x),构成复合函数 y=f(g(h(x)))。若 v 在 x 处可导,u 在 h(x) 处可导,y 在 g(h(x)) 可导,则 复合函数 y=f(g(h(x))) 在 x 可导。且有: $
约定:$ f'(g(x))=f'(u)|_{u=g(x)} $
(2)函数的和差积商复合函数可导,不能保证各自可导
4、幂指数函数 \(f(x)^{g(x)}\) 的求导法
设 $ f(x)>0,f(x),g(x) $ 均可导:
(1)将\(f(x)^{g(x)}\) 表成 $ e^{g(x)lnf(x)} $ 后求导
对 $ f(x){g(x)}=e $ 用复合函数求导法得:
(2)对数求导法
- 第一步两边取对数:对 $ y=f(x)^{g(x)} $ 两边取对数,得 $ lny=g(x)lnf(x) $。
- 第二步两边对 x 求导:$$ \frac{y'}{y}=g'(x)lnf(x)+g(x) \frac{f'(x)}{f(x)} $$ ,其中 y 是 x 的函数。
- 第三步把y换到右边:$$ y'=f(x)^{g(x)}[g'(x)lnf(x)+g(x) \frac{f'(x)}{f(x)}] $$
(3)对数求导法求连乘积的导数或微分
如:$ y=f_1(x)f_2(x) \cdots *f_n(x) $
- 第一步两边取绝对值再取对数:$$ ln|y|=ln|f_1(x)|+ln|f_2(x)|+ \cdots +ln|f_n(x)| $$
- 第二步两边对x求导化掉绝对值符号:$$ \frac{1}{y}y'= \frac{f_1'(x)}{f_1(x)}+ \cdots + \frac{f_n'(x)}{f_n(x)},\quad 即 y'=y[\frac{f_1'(x)}{f_1(x)}+ \cdots + \frac{f_n'(x)}{f_n(x)}] $$
5、反函数求导法
定理:设 $ y=f(x) 在区间 I_x 内可导且 f'(x) \neq 0,值域为区间 I_y,则 y=f(x) 的反函数 x=\varphi(y) 在 I_y 可导且 \varphi'(y)= \frac{1}{f'(x)}。 $
6、由参数方程确定的函数的求导法
给定参数方程 $ x= \varphi(t),y= \psi(t),t \in 区间I。 $
(1)若 $ x=\varphi(t)是区间I上的单调函数 $
则它存在反函数 $ t=\varphi^{-1}(x),$ 参数方程确定了 y 是 x 的函数 $ y=\psi(\varphi^{-1}(x)), $ 定义域是 $ x=\varphi(t) 在区间 I 上的值域 X. $
(2)设 $ \varphi(t),\psi(t)在区间 I 上连续 $
则 $ y=\psi(varphi)^{-1}(x) 在 X 上连续。 $
(3)设 $ \varphi(t),\psi(t)在t \in I 可导且 \varphi'(t) \neq 0 $
则 $ y=\psi(varphi)^{-1}(x) 在对应点 x=\varphi(t) 可导且 \frac{dy}{dx}= \frac{\psi'(t)}{\varphi'(t)} $
若 $ \psi(t), \varphi(t) 在 t \in I $ 二阶可导,可进一步求得二阶导数:
7、变限积分的求导法
定理:设 $ f(t) 在 [a,b] 连续,\psi(x) 和 \varphi(x) 在 [\alpha,\beta]可导,当 x \in [\alpha,\beta] 时,\alpha \leq \varphi(x),\psi(x) \leq b,则 y= \int_{\psi(x)}^{\varphi(x)}f(t)dt 在 [\alpha,\beta]可导,且 $
8、隐函数微分法
设有二元方程 $ F(x,y)=0(如x2+y2=1,x-y+\frac{1}{2}siny=0) $,若在区间 I
上存在函数 $y=y(x) 满足 F(x,y(x))=0,则称这个函数 y=y(x) 为方程 F(x,y)=0 在区间 I $ 上确定的 隐函数
。
若该隐函数可导,则由 $ F(x,y(x))=0 $ 和 复合函数求导法则可求得 y'
或 dy
所满足的方程,再解出 y'
或 dy
。
将 y'
表达式或 y'
满足的方程再对 x 求导,由复合函数求导法可求得 y''
。
四、分段函数求导法
分段函数
:函数在定义域的不同区间上有不同的表达式。
常见的有($ x=x_0为连接点 $):
分段函数求导法的关键就是:如何求连接点处的导数。
1、方法一:按求导法则分别求分段函数在连接点处的左右导数
根据如下结论:
(1)$ f'(x_0) 存在 \iff f_+'(x_0) 、f_-(x_0) 均存在且相等,即:f'(x_0)=f_+'(x_0)=f_-'(x_0)。 $
(2)若在 \(x_0\) 的右(或左)邻域上,$ f(x)=g(x) \quad (x_0 \leq x <x_0+\delta 或 x_0-\delta< x \leq x_0) $
(3)若 g(x)
可导,则 $ f_+'(x_0)=g_+'(x_0) \quad (f_-'(x_0)=g_-'(x_0)) $
根据上述结论,得到如下求连接点处导数的方法:
2、方法二:按定义求连接点处的导数或左右导数
设
若上述极限存在且相等,记为 l
,则 \(f'(x_0)=l\)。
3、方法三:连接点是连续点时,求导函数在连接点处的极限值
$ 设 f(x) 在 x_0 的空心领域 U_0(x_0, \delta) 内可导且 f(x) 在x_0 处连续。若存在极限 \lim_{x \to x_0}f'(x)=A,则 f'(x_0)=A。 $
五、高阶导数和n阶导数的求法
对于给定的函数 \(f(x)\) ,可以用逐阶求导法求出高阶导数。对于某些简单的函数则可以使用:归纳法、分解法、莱布尼茨法则、泰勒公式。
1、归纳法
先逐一求出 \(y=f(x)\) 的一、二、三阶导数等,若能观察出规律性,就可写出 \(y^{(n)}\) 的公式,然后用数学归纳法证明。
用归纳法易导出下列 简单的初等函数的 n 阶导数公式:
2、分解法
通过恒等变形式将某些函数分解成简单初等函数之和。
(1)有理函数与无理函数的分解
(2)三角函数的分解
主要利用三角函数恒等式及有关公式分解。