一元函数的导数与微分

一、一元函数的导数与微分

一元函数的导数是一类特殊的函数极限,也是一类 \(\frac{0}{0}\) 型极限(函数增量与自变量增量之比当自变量趋于零时的极限)。

在几何上函数的导数即曲线的切线的斜率。导数在几何上的应用就是求曲线的切线或法线的斜率。

在力学上路程函数的导数就是速度。

函数的可导性是比连续性更强的性质,因为可导必连续。

求一元函数的导数与微分的方法是相同的,因此把求导数与求微分的法则统称为微分法则

1、导数的定义

(1)定义1:$ f(x) 在 x_0 处可导 $

设函数 $ y=f(x) 在 x_0 $ 的某邻域有定义,若下面极限存在

\[\lim_{\triangle x \to 0} \frac{\triangle y}{\triangle x} = \lim_{\triangle x \to 0} \frac{f(x_0+ \triangle x)-f(x_0)}{\triangle x}, \]

其中 $\triangle y=f(x_0 + \triangle x) - f(x_0) ,则称 f(x) 在 x_0 可导,并称这个极限为 f(x) 在 x_0 处的 $ 导数(或微商),记作 $ f'(x_0),y'(x_0) 或 \frac{dy}{dx} |{x=x_0},\frac{df(x)}{dx} | 等。 $
令 $ x=x_0 + \triangle x,f'(x_0) 又可改写成 f'(x_0)= \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}。 $

(2)定义2:$ f(x) 在 x_0 处左右可导 $

设函数 $ y=f(x) 在 x_0 处存在如下单侧极限: $

\[\lim_{\triangle x \to 0+} \frac{\triangle y}{\triangle x}= \lim_{\triangle x \to 0+} \frac{f(x_0+ \triangle x)-f(x_0)}{ \triangle x } , \quad \lim_{\triangle x \to 0-} \frac{\triangle y}{\triangle x}= \lim_{\triangle x \to 0-} \frac{f(x_0+ \triangle x)-f(x_0)}{ \triangle x }, \]

其中 $ \triangle y = f(x_0+ \triangle x)-f(x_0),则分别称为 f(x) 在 x=x_0 $ 左、右可导,该极限分别称为 $ f(x) 在 x=x_0 的 $ 右、左导数,记为 $ f'+(x_0),f'_(x_0) 或 y'+(x_0),y'_(x_0)。 $

(3)几何意义

$ 函数 y=f(x) 在 x=x_0 处的导数 f'(x_0) 是曲线 y=f(x) 在点 (x_0, f(x_0)) 处切线的斜率。 $
切线方程:$ y-y_0=f'(x_0)(x-x_0) $
法线方程:$ y-y_0=- \frac{1}{f'(x_0)}(x-x_0),\quad (f'(x_0) \neq 0 时) $

(4)力学意义

质点作为直线运动,t时刻质点的坐标为 $ x=x(t),x'(t_0) 是 t=t_0 时刻的速度。 $速度(描述质点运动快慢和方向的物理量,等于位移对时间的微分):$ v= \frac{ds}{dt} $,其中v是速度矢量、s是位移矢量、t是时间。加速度(平均加速度的极限,也叫瞬时加速度):

\[a = \frac{dv}{ds}= \frac{d^2s}{dt^2} \]

单位是米每二次方秒,符号为 $ m/s^2 $。加速度(acceleration)是速度对时间的变化率,表示速度变化的快慢。加速度矢量等于速度矢量对时间的导数,其方向沿着速端图的切线方向并指向轨迹的凹侧。

(5)单侧可导和双侧可导的关系

定理:$ f(x) 在 x_0 可导 \iff f(x) 在 x_0 $ 左右导数均存在且相等,即

\[f'(x_0)=f'_+(x_0)=f'_\_(x_0) \]

2、可微的定义

定义:设函数 $ y=f(x),当自变量 x=x_0 有增量 \triangle x 时,若存在与 \triangle x 无关的常数 A(x_0),使得函数的增量 \triangle y=f(x_0+\triangle x)-f(x_0) 可表为 $

\[\triangle y= A(x_0)\triangle x + o(\triangle x) \quad (\triangle x \to 0) \]

则称 $ f(x) 在 x=x_0 处 \color{red}{可微} ,A(x_0) \triangle x 称为 f(x) 在 x=x_0 处的 \color{red}{微分} ,记为 $

\[dy|_{x=x_0}=A(x_0) \triangle x \quad 或 \quad df|_{x=x_0}=A(x_0) \triangle x \]

其中 $ o(\triangle x) 是 \triangle x \to 0 时比 \triangle x 高阶的无穷小量。 $
函数 $ y=f(x) 在 x=x_0 处的微分是该函数在 x=x_0 处函数增量的线性主要部分 $

(1)可微、可导及连续之间的关系

定理:f(x) 在 $ x_0 可导 \iff f(x)在x_0 可微 \overset{\Rightarrow}{\nLeftarrow} f(x)在 x=x_0 连续。 $

  • 可导和可微是等价的概念;
  • 可导和可微是连续的充分非必要条件。如:$ y=|x| 与 y= x^{\frac{1}{3}} 在 x=0 处连续,但不可导。 $
\[y=f(x)在 x_0 可微时,dy|_{x=x_0}=f'(x_0) \triangle x=f'(x_0)dx \quad (规定自变量 x 的微分 dx=\triangle x) \]
(2)微分的几何意义

$ \triangle y = f(x_0 + \triangle x)-f(x_0) 是曲线 y=f(x) 在点 x_0 处相应于自变量增量 \triangle x 的纵坐标 f(x_0) 的增量,微分 dy|_{x=x_0} 是曲线 y=f(x) 在点 M_0(x_0, f(x_0)) 处的切线相应于自变量增量 \triangle x 的纵坐标的增量。 $

3、函数在区间上的可导性、导函数

$ 若 \forall x \in (a,b),f(x) 可导,则称 f(x) 在 (a,b) $ 内可导
$ 若 f(x) 在 (a,b)内可导,又 f(x) 在 x=a 处右可导,在 x=b 处左可导,则称 f(x) 在 [a,b] $ 可导

(1)导函数

$ 若 f(x) 在区间 I 可导,则 \forall x \in I,都对应着 f(x) 的一个确定的导数值,这就构成一个新的函数,叫做 y=f(x) 的导函数 \(,简称 `导数`,也叫 `一阶导数`。记作:\) y',f'(x),\frac{dy}{dx} 或 \frac{df(x)}{dx} $。

(2)二阶导数及高阶导数

$ 函数 y=f(x) 的导数仍是 x 的函数,把 y'=f'(x) 的导数,叫做 y=f(x) 的二阶导数,记作 y'' 或 y^(2),f''(x) 或 f^(2)(x) 或 \frac{d2y}{dx2} 等。 $

$ 函数 y=f(x) 的 n-1 阶导数的导数称为 y=f(x) 的 n 阶导数,记作 y(n),y(n)(x) 或 \frac{dny}{dxn}。 $

$ 函数 f(x) 有 n 阶导数也称 f(x) n 阶可导。 $

根据定义,若 $ f(x) 在 x_0 处 n 阶可导,则 f(x) 在 x_0 $ 某领域必具有一切低于 n 阶的导数

(3)二阶导数的力学意义

质点作直线运动,t 时刻的坐标为 $ x=x(t),则 x''(t_0) 是 t=t_0 $ 时刻的加速度

(4)奇偶函数的导数性质

设 $ f(x)在 I $ 上可导

  • $ 若 f(x) 在 I 上为奇函数 \implies f'(x) 在 I 上为偶函数。 $
  • $ 若 f(x) 在 I 上为偶函数 \implies f'(x) 在 I 上为奇函数。 $

若 f(x) 存在原函数,其特性:

  • 奇函数的原函数为偶函数。
  • 偶函数的原函数仅有一个奇函数。
(5)周期函数的导数性质

设 $ f(x) 在 X 上可导,以 T 为周期 \implies f'(x) 在 X 上也以 T 为周期。 $

  • 周期函数的导函数是和原函数有相同周期周期函数
  • 周期函数的原函数不一定是周期函数,如 $ f(x)=1+cosx 以 2 \pi为周期,F(x)=x+sinx则无周期。 $

二、按定义求导数及其适用情形

按定义求一元函数 $ y=f(x) 在某点 x=x_0 处的导数,就是求 \frac{0}{0} 型极限,即求: $

\[\lim_{\triangle x \to 0} \frac{f(x+ \triangle x) -f(x)}{\triangle x} \]

若 $ \triangle x \to 0 时,f(x+\triangle x)-f(x) 不是无穷小量,则 f'(x) 不存在。 $

1、按定义求导数适用的情形

(1)情形1

除了常数函数外还有某些基本初等函数得导数公式,如:$ (sinx)'=cosx,(lnx)'= \frac{1}{x} $ 等均按定义导出。(其他基本初等函数的导数公式可由这两个导数公式及求导法则导出)

(2)情形2

求导法则不能用的情形:如设 $ f(x)=(x-a) \varphi(x),\varphi(x) 在 x=a 处连续,试问 f(x) 在 x=a 处是否可导? $ 这里乘积的求导法则不适用。因为不知道 $ \varphi(x) 在 x=a $ 处是否可导。

(3)情形3

求某类分段函数在连接点处的导数。

2、利用导数定义求极限

设 $ f'(x) $ 存在,若所求极限可化为如下类型:

\[\lim_{\triangle x \to 0} \frac{f(x+ \triangle x)-f(x)}{\triangle x} \]

则按导数定义即是 \(f'(x)\)
由数列极限与函数极限的关系可得到

\[\lim_{n \to +\infty} \frac{f(x+x_n)-f(x)}{x_n}=f'(x) ,其中 \lim_{n \to +\infty}x_n=0 \]

三、求导法则

求导法则分如下几种情况:

  1. 导数四则运算法则
  2. 复合函数求导法则
    • 幂指数函数求导
    • 反函数求导
    • 隐函数求导
    • 参数式求导
    • 变限积分求导
  3. 分段函数的求导

1、基本初等函数导数表(微分表)

\[常数:(c)'=0 \quad (c为常数),\quad 幂函数:(x^\alpha)'=\alpha x^{(\alpha-1)}, \]
\[正弦函数: (sinx)'=cosx,\quad 余弦函数: (cosx)'=-sinx \]
\[正切函数:(tanx)'=(\frac{sinx}{cosx})'= \frac{(sinx)'*cosx-sinx*(cosx)'}{cos^2x}= \frac{cos^2x+sin^2x}{cos^2x}= \frac{1}{cos^2x}, \quad 余切函数:(cotx)'=- \frac{1}{sin^2x} \]
\[正割函数:(secx)'=secxtanx, \quad 余割函数:(cscx)'=-cscxcotx \]
\[对数函数:(log_ax)'= \frac{lnx}{lna}= \frac{1}{xlna} \quad (a>0,a \neq 1), \quad (lnx)'= \frac{1}{x} \]
\[指数函数:\quad (a^x)'=\frac{1}{(log_aa^x)'}=\frac{a^x}{log_ae}=a^x*log_ea=a^xlna ,\quad (e^x)'=e^xlne=e^x \]
\[反正弦函数:(arcsinx)'= \frac{1}{\sqrt{1-x^2}} \quad 反余弦函数:(arccosx)'= -\frac{1}{\sqrt{1-x^2}} \]
\[反正切函数:(arctanx)'= \frac{1}{1+x^2} \quad 反余切函数:(arccotx)'= -\frac{1}{1+x^2} \]
\[双曲线函数:(shx)'=chx \]
(1)对数运算法则
\[log_aM \cdot N= log_a M + log_a N, \quad log_a \frac{M}{N}=log_a M - log_a N \]
\[log_a M^n=nlog_aM, \quad log_ab*log_ba=1, \quad log_ab= \frac{log_cb}{log_ca} \]
(2)指数运算法则
\[a^M*a^N=a^{M+N}, \quad \frac{a^M}{a^N}=a^{M-N}, \quad (a^M)^N=a^{MN}, \quad (ab)^M=a^M*b^M \]

2、导数与微分的四则运算法则

设 $ u(x)和v(x)在x处可导,则: $

\[加减法:[u(x) \pm v(x)]'=u'(x) \pm v'(x) \]
\[乘法:[cu(x)]'=cu'(x), \quad [u(x)v(x)]'=u'(x)v(x)+u(x)v'(x) \]
\[除法:[\frac{1}{v(x)}]'= \frac{-v'(x)}{v^2(x)}, \quad [\frac{u(x)}{v(x)}]'= \frac{u'(x)v(x)-u(x)v'(x)}{v^2(x)} \quad (v(x) \neq 0) \]

设 $ f(x)和g(x)在x处可微,则: $

\[加减法:d[f(x) \pm g(x)]=df(x) \pm dg(x) \]
\[乘法:d[f(x)g(x)]=g(x)df(x) + f(x)dg(x) \]
\[除法:d[\frac{f(x)}{g(x)}]= \frac{g(x)df(x)-f(x)dg(x)}{g^2(x)},\quad (g(x) \neq 0) \]

3、复合函数的导数和微分法则

定理:$ 设 \varphi(x)在 x 处可导,y=f(u) 在对应点 u= \varphi(x) 处可导,则复合函数 y=f(\varphi(x)) 在 x 处可导 且 \quad \frac{dy}{dx}= \frac{dy}{du} * \frac{du}{dx} \quad 或 \quad y'_x=y'_uu'_x \quad 或 \quad y'_x=f'(u)\varphi'(x)。 $

用微分表示 $ dy=f'(u)du $,其中 u 可以是自变量也可以是另一变量的可微函数————这就是一阶微分形式的不变性

(1)多层复合函数

若是多层复合函数,则可 逐次 用复合函数求导法求它的导数。

如:$ y=f(u),u=g(v),v=h(x),构成复合函数 y=f(g(h(x)))。若 v 在 x 处可导,u 在 h(x) 处可导,y 在 g(h(x)) 可导,则 复合函数 y=f(g(h(x))) 在 x 可导。且有: $

\[\frac{dy}{dx}= \frac{dy}{du} * \frac{du}{dv} * \frac{dv}{dx} \quad 或 \quad \frac{d}{dx}f[g(h(x))]=f'[g(h(x))] \frac{d}{dx}g(h(x))=f'[g(h(x))]g'(h(x))h'(x) \]

约定:$ f'(g(x))=f'(u)|_{u=g(x)} $

(2)函数的和差积商复合函数可导,不能保证各自可导
\[ f(x)=\bigg\{ \begin{matrix} 0, \quad 当x为有理数,\\ 1,\quad 当x为无理数;\end{matrix} \quad g(x)=\bigg\{ \begin{matrix} 1, \quad 当x为有理数,\\ 0,\quad 当x为无理数;\end{matrix} \quad f(x)+g(x)=1,f(x)*g(x)=0,f[g(x)]=0 都可导,但是f(x)和g(x)都不可导。 \]

4、幂指数函数 \(f(x)^{g(x)}\) 的求导法

设 $ f(x)>0,f(x),g(x) $ 均可导:

(1)将\(f(x)^{g(x)}\) 表成 $ e^{g(x)lnf(x)} $ 后求导

对 $ f(x){g(x)}=e $ 用复合函数求导法得:

\[[f(x)^{g(x)}]'=[e^{g(x)lnf(x)}]'=e^{g(x)lnf(x)}[{g(x)lnf(x)}]'=f(x)^{g(x)}[g'(x)lnf(x)+\frac{g(x)}{f(x)}f'(x)] \]
(2)对数求导法
  1. 第一步两边取对数:对 $ y=f(x)^{g(x)} $ 两边取对数,得 $ lny=g(x)lnf(x) $。
  2. 第二步两边对 x 求导:$$ \frac{y'}{y}=g'(x)lnf(x)+g(x) \frac{f'(x)}{f(x)} $$ ,其中 y 是 x 的函数。
  3. 第三步把y换到右边:$$ y'=f(x)^{g(x)}[g'(x)lnf(x)+g(x) \frac{f'(x)}{f(x)}] $$
(3)对数求导法求连乘积的导数或微分

如:$ y=f_1(x)f_2(x) \cdots *f_n(x) $

  1. 第一步两边取绝对值再取对数:$$ ln|y|=ln|f_1(x)|+ln|f_2(x)|+ \cdots +ln|f_n(x)| $$
  2. 第二步两边对x求导化掉绝对值符号:$$ \frac{1}{y}y'= \frac{f_1'(x)}{f_1(x)}+ \cdots + \frac{f_n'(x)}{f_n(x)},\quad 即 y'=y[\frac{f_1'(x)}{f_1(x)}+ \cdots + \frac{f_n'(x)}{f_n(x)}] $$

5、反函数求导法

定理:设 $ y=f(x) 在区间 I_x 内可导且 f'(x) \neq 0,值域为区间 I_y,则 y=f(x) 的反函数 x=\varphi(y) 在 I_y 可导且 \varphi'(y)= \frac{1}{f'(x)}。 $

6、由参数方程确定的函数的求导法

给定参数方程 $ x= \varphi(t),y= \psi(t),t \in 区间I。 $

(1)若 $ x=\varphi(t)是区间I上的单调函数 $

则它存在反函数 $ t=\varphi^{-1}(x),$ 参数方程确定了 y 是 x 的函数 $ y=\psi(\varphi^{-1}(x)), $ 定义域是 $ x=\varphi(t) 在区间 I 上的值域 X. $

(2)设 $ \varphi(t),\psi(t)在区间 I 上连续 $

则 $ y=\psi(varphi)^{-1}(x) 在 X 上连续。 $

(3)设 $ \varphi(t),\psi(t)在t \in I 可导且 \varphi'(t) \neq 0 $

则 $ y=\psi(varphi)^{-1}(x) 在对应点 x=\varphi(t) 可导且 \frac{dy}{dx}= \frac{\psi'(t)}{\varphi'(t)} $

若 $ \psi(t), \varphi(t) 在 t \in I $ 二阶可导,可进一步求得二阶导数:

\[\frac{d^2y}{dx^2}=\frac{d}{dx}[\frac{\psi'(t)}{\varphi'(t)}]=\frac{d}{dt}[\frac{\psi'(t)}{\varphi'(t)}]\frac{dt}{dx}= \frac{\psi''(t)\varphi'(t)-\psi'(t)\varphi''(t)}{\varphi^{'3}(t)} \]

7、变限积分的求导法

定理:设 $ f(t) 在 [a,b] 连续,\psi(x) 和 \varphi(x) 在 [\alpha,\beta]可导,当 x \in [\alpha,\beta] 时,\alpha \leq \varphi(x),\psi(x) \leq b,则 y= \int_{\psi(x)}^{\varphi(x)}f(t)dt 在 [\alpha,\beta]可导,且 $

\[\frac{dy}{dx}=\frac{d}{dx}\int_a^{\varphi(x)}f(t)dt- \frac{d}{dx}\int_a^{\psi(x)}f(t)dt=f(\varphi(x))\varphi'(x)-f(\psi(x))\psi'(x) \]

8、隐函数微分法

设有二元方程 $ F(x,y)=0(如x2+y2=1,x-y+\frac{1}{2}siny=0) $,若在区间 I 上存在函数 $y=y(x) 满足 F(x,y(x))=0,则称这个函数 y=y(x) 为方程 F(x,y)=0 在区间 I $ 上确定的 隐函数

若该隐函数可导,则由 $ F(x,y(x))=0 $ 和 复合函数求导法则可求得 y'dy 所满足的方程,再解出 y'dy
y' 表达式或 y' 满足的方程再对 x 求导,由复合函数求导法可求得 y''

四、分段函数求导法

分段函数:函数在定义域的不同区间上有不同的表达式。

常见的有($ x=x_0为连接点 $):

\[ f(x)= \bigg\{ \begin{matrix} g(x), \quad x \leq x_0,\\ h(x), \quad x > x_0, \end{matrix} \quad f(x)= \bigg\{ \begin{matrix} g(x), \quad x < x_0,\\ A, \quad x=x_0, \\ h(x), \quad x > x_0, \end{matrix} \quad f(x)= \bigg\{ \begin{matrix} g(x), \quad x \neq x_0,\\ A, \quad x = x_0, \end{matrix} \]

分段函数求导法的关键就是:如何求连接点处的导数。

1、方法一:按求导法则分别求分段函数在连接点处的左右导数

根据如下结论:
(1)$ f'(x_0) 存在 \iff f_+'(x_0) 、f_-(x_0) 均存在且相等,即:f'(x_0)=f_+'(x_0)=f_-'(x_0)。 $
(2)若在 \(x_0\) 的右(或左)邻域上,$ f(x)=g(x) \quad (x_0 \leq x <x_0+\delta 或 x_0-\delta< x \leq x_0) $
(3)若 g(x) 可导,则 $ f_+'(x_0)=g_+'(x_0) \quad (f_-'(x_0)=g_-'(x_0)) $

根据上述结论,得到如下求连接点处导数的方法:

\[ 设 f(x)=\bigg\{ \begin{matrix} g(x), \quad x_0-\delta < x \leq x_0,\\ h(x), \quad x_0 < x < x_0+\delta, \end{matrix} \quad \delta >0 为某常数,若 g_-'(x_0) = h_+'(x_0) \stackrel{记为}{=} A,又 g(x_0)=h(x_0),则 f'(x_0)= A. \]

2、方法二:按定义求连接点处的导数或左右导数

\[ f(x)= \bigg\{ \begin{matrix} g(x), \quad x_0- \delta < x < x_0,\\ A, \quad x=x_0, \\ h(x), \quad x_0 < x < x_0+ \delta, \end{matrix} \quad 其中 \delta > 0 为某常数,g(x) 与 h(x) 在 x_0 处无定义,则可按定义求 f_+'(x_0) 与 f_-'(x_0): \]
\[f_+'(x_0)= \lim_{\triangle x \to 0+} \frac{f(x_0+\triangle x)-f(x_0)}{\triangle x}= \lim_{\triangle x \to 0+} \frac{h(x_0+\triangle x)-A}{\triangle x}, \]
\[f_-'(x_0)= \lim_{\triangle x \to 0-} \frac{f(x_0+\triangle x)-f(x_0)}{\triangle x}= \lim_{\triangle x \to 0-} \frac{g(x_0+\triangle x)-A}{\triangle x}. \]

若上述极限存在且相等,记为 l,则 \(f'(x_0)=l\)

3、方法三:连接点是连续点时,求导函数在连接点处的极限值

$ 设 f(x) 在 x_0 的空心领域 U_0(x_0, \delta) 内可导且 f(x) 在x_0 处连续。若存在极限 \lim_{x \to x_0}f'(x)=A,则 f'(x_0)=A。 $

五、高阶导数和n阶导数的求法

对于给定的函数 \(f(x)\) ,可以用逐阶求导法求出高阶导数。对于某些简单的函数则可以使用:归纳法、分解法、莱布尼茨法则、泰勒公式。

1、归纳法

先逐一求出 \(y=f(x)\) 的一、二、三阶导数等,若能观察出规律性,就可写出 \(y^{(n)}\) 的公式,然后用数学归纳法证明。
用归纳法易导出下列 简单的初等函数的 n 阶导数公式

\[(e^{ax+b})^{(n)}=a^ne^{ax+b} ,\quad (\frac{1}{ax+b})^{(n)}= \frac{(-1)^na^nn!}{(ax+b)^{n+1}}, \quad (ln(ax+b))^{(n)}=(-1)^{n-1}a^n(n-1)! \frac{1}{(ax+b)^n} \]
\[(sin(ax+b))^{(n)}=a^n \sin(ax+b+\frac{n\pi}{2}),\quad (cos(ax+b))^{(n)}=a^n \cos(ax+b+\frac{n\pi}{2}),\quad ((ax+b)^{\beta})^{(n)}=a^n \beta(\beta-1) \cdots (\beta-n+1)(ax+b)^{\beta-n} \]

2、分解法

通过恒等变形式将某些函数分解成简单初等函数之和。

(1)有理函数与无理函数的分解
(2)三角函数的分解

主要利用三角函数恒等式及有关公式分解。

3、莱布尼茨法则求乘积的n阶导数

\[(u(x)v(x))^{(n)}=\sum^n_{k=0}C^k_nu^{(k)}(x)v^{(n-k)}(x)。\quad 其中 C^k_n= \frac{n!}{k!(n-k)!},u^{(0)}(x)=u(x),v^{(0)}(x)=v(x) \]

4、由f(x) 在 \(x=x_0\) 处的泰勒公式的系数或幂级数展开式的系数求 \(f^{(n)}(x_0)\)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值