人工智能之数学基础:欧式距离及在人工智能领域中的应用

本文重点

欧式距离,也称为欧几里得距离,是数学中用于衡量多维空间中两点之间绝对距离的一种基本方法。这一概念最早由古希腊数学家欧几里得提出,并以其名字命名。欧式距离的计算基于勾股定理,即在一个直角三角形中,斜边的平方等于两直角边的平方和。在多维空间中,欧式距离可以看作是各维度上两点间差的平方和的平方根。

欧式距离计算公式

前面的课程中,我们学习了范数,其中有一个范数叫做L2范数,通过L2范数可以构建出两个向量间的欧式距离。两个向量相减之后的L2范数是就是两个向量的欧式距离:

在二维空间中,两点A(x1,y1​)和B(x2​,y2​)之间的欧式距离d可以表示为:

在三维空间中,若有两点A(x1​,y1​,z1​)和B(x2​,y2​,z2​),则它们之间的欧式距离为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天五分钟玩转人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值