重磅!QwQ-32B 本地部署全攻略:用 Ollama 一键运行,轻松上手!

想象一下,你的 AI 无需联网,就能流畅地回答问题,甚至生成代码、优化工作流。无论是 隐私保护、离线可用、低成本运行,还是 稳定无延迟,本地大模型的优势已经让越来越多的技术人跃跃欲试。

本教程学习如何在本地使用 Ollama 安装、设置和运行 QwQ-32B,并构建一个简单的 Gradio 应用程序。

今天的主角 QwQ-32B,正是本地部署的明星选手!QwQ-32B 是 Qwen 的推理模型,它旨在在复杂问题解决和推理任务中表现出色。尽管只有 320 亿个参数,但该模型在性能上与拥有 6710 亿个参数的更大模型 DeepSeek-R1 相当。

图片

尽管其规模庞大,QwQ-32B 可以量化以在消费级硬件上高效运行。在本地运行 QwQ-32B 可让您完全控制模型执行,无需依赖外部服务器。以下是本地运行 QwQ-32B 的一些优点:

图片

使用 Ollama 在本地设置 QwQ-32B

Ollama 通过处理模型下载、量化执行简化了在本地运行LLMs的过程。

步骤 1:安装 Ollama

下载并安装Ollama 。  

图片

下载完成后,像安装其他应用程序一样安装 Ollama 应用程序。 

第 2 步:下载并运行 QwQ-32B

让我们测试设置并下载我们的模型。启动终端并输入以下命令来下载并运行 QwQ-32B 模型:

    ollama run qwq:32b

    通过 Ollama 下载 Qwen QwQ 32B 模型

    QwQ-32B 是一个大型模型。如果您的系统资源有限,您可以选择较小的量化版本。例如,下面我们使用的Q4_K_M版本是 19.85GB 的模型,它在性能和大小之间取得了平衡:

      ollama run qwq:Q4_K_M

      图片

      步骤 3:在后台运行 QwQ-32B

      要持续运行 QwQ-32B 并通过 API 为其提供服务,请启动 Ollama 服务器:

        ollama serve

        这将使该模型可用于下一节讨论的应用程序。

        本地使用 QwQ-32B

        现在 QwQ-32B 已经设置好了,让我们探索如何与它交互。

        步骤 1:通过 CLI 运行推理

        模型下载完成后,您可以直接在终端中与 QwQ-32B 模型进行交互:

          ollama run qwqHow many r's are in the word "strawberry”?

          图片

          模型响应通常是其思考响应(封装在<think> </think>标签中)然后是最终答案。

          步骤 2:通过 API 访问 QwQ-32B

          要将 QwQ-32B 集成到应用程序中,您可以将 Ollama API 与 curl 结合使用。在终端中运行以下 curl 命令。

            curl -X POST http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{  "model": "qwq",  "messages": [{"role": "user", "content": "Explain Newton second law of motion"}],   "stream": false}'

            curl是 Linux 原生的命令行工具,但也适用于 macOS。它允许用户直接从终端发出 HTTP 请求,使其成为与 API 交互的绝佳工具。

            图片

            注意:确保正确放置引号并选择正确的本地主机端口以防止dquote出现错误。

            步骤3:使用Python运行QwQ-32B

            我们可以在任何集成开发环境(IDE)中运行Ollama。您可以使用以下代码安装Ollama Python包: 

              pip install ollama

              安装 Ollama 后,使用以下脚本与模型交互:

                import ollamaresponse = ollama.chat(    model="qwq",    messages=[        {"role": "user", "content": "Explain Newton's second law of motion"},    ],)print(response["message"]["content"])

                ollama.chat()函数接收模型名称和用户提示,将其作为对话进行处理。然后脚本提取并打印模型的响应。

                图片

                构建QwQ-32B 本地推理应用

                我们可以使用 QwQ-32B 和 Gradio 创建一个简单的逻辑推理助手,它将接受用户输入的问题并生成结构化、合乎逻辑的响应。

                此应用程序将使用 QwQ-32B 的分步思维方法提供清晰、合理的答案,使其可用于解决问题、辅导和 AI 辅助决策。

                步骤 1:先决条件

                在深入实施之前,让我们确保已经安装了以下工具和库:

                • Python 3.8+
                • Gradio:创建一个用户友好的网络界面。
                • Ollama :一个本地访问模型的库

                运行以下命令安装必要的依赖项:

                  pip install gradio ollama

                  安装上述依赖项后,运行以下导入命令:

                    import gradio as grimport ollamaimport re

                    步骤 2:使用 Ollama 查询 QwQ 32B

                    现在我们已经有了依赖关系,我们将构建一个查询函数将问题传递给模型并得到结构化的响应。

                      def query_qwq(question):    response = ollama.chat(        model="qwq",        messages=[{"role": "user", "content": question}]    )    full_response = response["message"]["content"]    # Extract the <think> part and the final answer    think_match = re.search(r"<think>(.*?)</think>", full_response, re.DOTALL)    think_text = think_match.group(1).strip() if think_match else "Thinking process not explicitly provided."    final_response = re.sub(r"<think>.*?</think>", "", full_response, flags=re.DOTALL).strip()    return think_text, final_response

                      query_qwq()函数通过 Ollama 与 Qwen QwQ-32B 模型交互,发送用户提供的问题并接收结构化响应。它提取了两个关键组件:

                      1. 思考过程:包括模型的推理步骤(摘自<think>...</think>标签)。
                      2. 最终响应:此字段包含推理后的结构化的最终答案。(不包括<think>部分)

                      这将推理步骤和最终响应分开,确保模型得出结论的透明度。

                      步骤 3:创建 Gradio 界面

                      现在我们已经设置了核心功能,我们将构建 Gradio UI。

                        interface = gr.Interface(    fn=query_qwq,    inputs=gr.Textbox(label="Ask a logical reasoning question"),    outputs=[gr.Textbox(label="Thinking Process"), gr.Textbox(label="Final Response")],    title="QwQ-32B Powered: Logical Reasoning Assistant",    description="Ask a logical reasoning question and the assistant will provide an explanation.")interface.launch(debug = True)

                        这个 Gradio 界面设置了一个逻辑推理助手,它通过函数接收用户输入的逻辑推理问题,gr.Textbox()并使用该query_qwq()  函数进行处理。

                        最后,该interface.launch()函数启动启用了调试的 Gradio 应用程序,允许实时错误跟踪和日志以进行故障排除。

                        图片

                        使用 Ollama 在本地运行 QwQ-32B 可实现私密、快速且经济高效的模型推理。

                        在一系列权威基准测试中,千问QwQ-32B 模型表现异常出色,几乎完全超越了OpenAI-o1-mini,比肩最强开源推理模型DeepSeek-R1:在测试数学能力的AIME24评测集上,以及评估代码能力的LiveCodeBench中,千问QwQ-32B表现与DeepSeek-R1相当,远胜于o1-mini及相同尺寸的R1蒸馏模型。

                        图片

                        大模型正在变得越来越高效,硬件门槛也在降低,未来 “个人 AI” 的可能性正逐渐变为现实。

                        你怎么看 本地 AI 取代云端 API 这个趋势?你会考虑部署 QwQ-32B 作为自己的私人 AI 吗?

                         

                         如何系统的去学习大模型LLM ?

                        大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

                        事实上,抢你饭碗的不是AI,而是会利用AI的人。

                        科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

                        与其焦虑……

                        不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

                        但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

                        基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

                        在这个版本当中:

                        第一您不需要具备任何算法和数学的基础
                        第二不要求准备高配置的电脑
                        第三不必懂Python等任何编程语言

                        您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

                        一、LLM大模型经典书籍

                        AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

                        在这里插入图片描述

                        二、640套LLM大模型报告合集

                        这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
                        在这里插入图片描述

                        三、LLM大模型系列视频教程

                        在这里插入图片描述

                        四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

                        在这里插入图片描述

                        五、AI产品经理大模型教程

                        在这里插入图片描述

                        LLM大模型学习路线 

                        阶段1:AI大模型时代的基础理解

                        • 目标:了解AI大模型的基本概念、发展历程和核心原理。

                        • 内容

                          • L1.1 人工智能简述与大模型起源
                          • L1.2 大模型与通用人工智能
                          • L1.3 GPT模型的发展历程
                          • L1.4 模型工程
                          • L1.4.1 知识大模型
                          • L1.4.2 生产大模型
                          • L1.4.3 模型工程方法论
                          • L1.4.4 模型工程实践
                          • L1.5 GPT应用案例

                        阶段2:AI大模型API应用开发工程

                        • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

                        • 内容

                          • L2.1 API接口
                          • L2.1.1 OpenAI API接口
                          • L2.1.2 Python接口接入
                          • L2.1.3 BOT工具类框架
                          • L2.1.4 代码示例
                          • L2.2 Prompt框架
                          • L2.3 流水线工程
                          • L2.4 总结与展望

                        阶段3:AI大模型应用架构实践

                        • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

                        • 内容

                          • L3.1 Agent模型框架
                          • L3.2 MetaGPT
                          • L3.3 ChatGLM
                          • L3.4 LLAMA
                          • L3.5 其他大模型介绍

                        阶段4:AI大模型私有化部署

                        • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

                        • 内容

                          • L4.1 模型私有化部署概述
                          • L4.2 模型私有化部署的关键技术
                          • L4.3 模型私有化部署的实施步骤
                          • L4.4 模型私有化部署的应用场景

                        这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

                        <think>好的,我现在需要帮助用户了解如何在本地环境中部署QwQ-32B模型。首先,我得确认用户的需求是什么。用户提到了本地部署教程和配置指南,可能涉及安装步骤、硬件要求、依赖项安装、模型下载、运行示例以及常见问题解决。 首先,我应该回顾已有的引用内容。引用[1]提到Hugging Face平台提供了详细的文档和教程,包括安装指南和代码示例,这对用户来说可能很有用。引用[2]是GitHub上的一个具体部署教程,涉及使用vLLM部署Qwen2.5-7B-Instruct模型,虽然模型不同,但可能流程类似,可以作为参考。引用[3]提到HiFox平台支持QwQ-32B的调用,但用户需要的是本地部署,所以这部分可能不太相关,但可以提到如果有需要后续集成到平台的话可以参考。 接下来,我需要组织步骤。通常,本地部署机器学习模型的步骤包括:环境准备(硬件和软件)、依赖安装、模型获取、配置和运行、验证以及问题排查。根据引用内容,Hugging Face的文档可能已经涵盖了这些步骤,而GitHub的教程可能提供了具体的命令行操作和示例代码。 用户可能不熟悉如何从Hugging Face下载模型,所以需要详细说明使用`git-lfs`克隆仓库。另外,硬件要求方面,QwQ-32B作为大型模型可能需要较高的显存,比如至少24GB的GPU内存,这点需要明确。依赖项方面,除了Transformers库,可能还需要其他库如torch、vLLM等,需要根据引用[2]中的内容补充。 还要考虑不同的使用方式,比如使用Hugging Face的Pipeline或者vLLM加速推理。引用[2]中提到了vLLM部署,这可能优化推理速度,值得包括在教程中。此外,常见问题如CUDA版本不兼容、内存不足,需要给出解决建议,比如降低批量大小或使用量化。 最后,生成相关问题,可能涉及性能优化、多GPU部署、微调方法以及与其他工具集成,这些问题可以引导用户进一步探索。 需要确保所有步骤清晰,代码示例正确,并且引用来源正确标注。同时,提醒用户注意模型版本和依赖库的兼容性,避免常见错误。</think>以下是QwQ-32B模型的本地部署教程和配置指南: ### 一、环境准备 1. **硬件要求**: - GPU:推荐NVIDIA A100/A40 (显存≥24GB) - 内存:建议≥64GB DDR4 - 存储:需预留≥80GB固态硬盘空间 2. **软件依赖**: - CUDA 11.8及以上版本 - Python 3.9+ - PyTorch 2.1.0+ ```bash pip install transformers>=4.35.0 huggingface_hub ``` ### 二、模型下载 通过Hugging Face官方仓库获取模型[^1]: ```bash git lfs install git clone https://huggingface.co/QwQ-32B/QWQ-32B-Base ``` ### 三、基础部署 使用Hugging Face Pipeline快速调用: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("QWQ-32B-Base", device_map="auto") tokenizer = AutoTokenizer.from_pretrained("QWQ-32B-Base") inputs = tokenizer("北京的著名景点有", return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0])) ``` ### 四、高性能部署(vLLM) 参考ModelScope的优化方案[^2]: ```bash pip install vllm==0.3.3 ``` 部署代码: ```python from vllm import LLM, SamplingParams llm = LLM(model="QWQ-32B-Base") sampling_params = SamplingParams(temperature=0.8, top_p=0.95) outputs = llm.generate(["解释量子纠缠现象"], sampling_params) print(outputs[0].outputs[0].text) ``` ### 五、常见问题解决 1. **CUDA内存不足**: - 降低`max_new_tokens`值 - 添加`load_in_4bit=True`参数进行4bit量化 ```python model = AutoModelForCausalLM.from_pretrained(..., load_in_4bit=True) ``` 2. **下载中断**: ```bash huggingface-cli resume-download QWQ-32B-Base ``` ### 六、验证部署 运行测试脚本: ```python import torch print(torch.cuda.is_available()) # 应输出True print(torch.cuda.get_device_name(0)) # 显示GPU型号 ```
                        评论
                        添加红包

                        请填写红包祝福语或标题

                        红包个数最小为10个

                        红包金额最低5元

                        当前余额3.43前往充值 >
                        需支付:10.00
                        成就一亿技术人!
                        领取后你会自动成为博主和红包主的粉丝 规则
                        hope_wisdom
                        发出的红包
                        实付
                        使用余额支付
                        点击重新获取
                        扫码支付
                        钱包余额 0

                        抵扣说明:

                        1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
                        2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

                        余额充值