重磅!QwQ-32B 本地部署全攻略:用 Ollama 一键运行,轻松上手!

想象一下,你的 AI 无需联网,就能流畅地回答问题,甚至生成代码、优化工作流。无论是 隐私保护、离线可用、低成本运行,还是 稳定无延迟,本地大模型的优势已经让越来越多的技术人跃跃欲试。

本教程学习如何在本地使用 Ollama 安装、设置和运行 QwQ-32B,并构建一个简单的 Gradio 应用程序。

今天的主角 QwQ-32B,正是本地部署的明星选手!QwQ-32B 是 Qwen 的推理模型,它旨在在复杂问题解决和推理任务中表现出色。尽管只有 320 亿个参数,但该模型在性能上与拥有 6710 亿个参数的更大模型 DeepSeek-R1 相当。

图片

尽管其规模庞大,QwQ-32B 可以量化以在消费级硬件上高效运行。在本地运行 QwQ-32B 可让您完全控制模型执行,无需依赖外部服务器。以下是本地运行 QwQ-32B 的一些优点:

图片

使用 Ollama 在本地设置 QwQ-32B

Ollama 通过处理模型下载、量化执行简化了在本地运行LLMs的过程。

步骤 1:安装 Ollama

下载并安装Ollama 。  

图片

下载完成后,像安装其他应用程序一样安装 Ollama 应用程序。 

第 2 步:下载并运行 QwQ-32B

让我们测试设置并下载我们的模型。启动终端并输入以下命令来下载并运行 QwQ-32B 模型:

    ollama run qwq:32b

    通过 Ollama 下载 Qwen QwQ 32B 模型

    QwQ-32B 是一个大型模型。如果您的系统资源有限,您可以选择较小的量化版本。例如,下面我们使用的Q4_K_M版本是 19.85GB 的模型,它在性能和大小之间取得了平衡:

      ollama run qwq:Q4_K_M

      图片

      步骤 3:在后台运行 QwQ-32B

      要持续运行 QwQ-32B 并通过 API 为其提供服务,请启动 Ollama 服务器:

        ollama serve

        这将使该模型可用于下一节讨论的应用程序。

        本地使用 QwQ-32B

        现在 QwQ-32B 已经设置好了,让我们探索如何与它交互。

        步骤 1:通过 CLI 运行推理

        模型下载完成后,您可以直接在终端中与 QwQ-32B 模型进行交互:

          ollama run qwqHow many r's are in the word "strawberry”?

          图片

          模型响应通常是其思考响应(封装在<think> </think>标签中)然后是最终答案。

          步骤 2:通过 API 访问 QwQ-32B

          要将 QwQ-32B 集成到应用程序中,您可以将 Ollama API 与 curl 结合使用。在终端中运行以下 curl 命令。

            curl -X POST http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{  "model": "qwq",  "messages": [{"role": "user", "content": "Explain Newton second law of motion"}],   "stream": false}'

            curl是 Linux 原生的命令行工具,但也适用于 macOS。它允许用户直接从终端发出 HTTP 请求,使其成为与 API 交互的绝佳工具。

            图片

            注意:确保正确放置引号并选择正确的本地主机端口以防止dquote出现错误。

            步骤3:使用Python运行QwQ-32B

            我们可以在任何集成开发环境(IDE)中运行Ollama。您可以使用以下代码安装Ollama Python包: 

              pip install ollama

              安装 Ollama 后,使用以下脚本与模型交互:

                import ollamaresponse = ollama.chat(    model="qwq",    messages=[        {"role": "user", "content": "Explain Newton's second law of motion"},    ],)print(response["message"]["content"])

                ollama.chat()函数接收模型名称和用户提示,将其作为对话进行处理。然后脚本提取并打印模型的响应。

                图片

                构建QwQ-32B 本地推理应用

                我们可以使用 QwQ-32B 和 Gradio 创建一个简单的逻辑推理助手,它将接受用户输入的问题并生成结构化、合乎逻辑的响应。

                此应用程序将使用 QwQ-32B 的分步思维方法提供清晰、合理的答案,使其可用于解决问题、辅导和 AI 辅助决策。

                步骤 1:先决条件

                在深入实施之前,让我们确保已经安装了以下工具和库:

                • Python 3.8+
                • Gradio:创建一个用户友好的网络界面。
                • Ollama :一个本地访问模型的库

                运行以下命令安装必要的依赖项:

                  pip install gradio ollama

                  安装上述依赖项后,运行以下导入命令:

                    import gradio as grimport ollamaimport re

                    步骤 2:使用 Ollama 查询 QwQ 32B

                    现在我们已经有了依赖关系,我们将构建一个查询函数将问题传递给模型并得到结构化的响应。

                      def query_qwq(question):    response = ollama.chat(        model="qwq",        messages=[{"role": "user", "content": question}]    )    full_response = response["message"]["content"]    # Extract the <think> part and the final answer    think_match = re.search(r"<think>(.*?)</think>", full_response, re.DOTALL)    think_text = think_match.group(1).strip() if think_match else "Thinking process not explicitly provided."    final_response = re.sub(r"<think>.*?</think>", "", full_response, flags=re.DOTALL).strip()    return think_text, final_response

                      query_qwq()函数通过 Ollama 与 Qwen QwQ-32B 模型交互,发送用户提供的问题并接收结构化响应。它提取了两个关键组件:

                      1. 思考过程:包括模型的推理步骤(摘自<think>...</think>标签)。
                      2. 最终响应:此字段包含推理后的结构化的最终答案。(不包括<think>部分)

                      这将推理步骤和最终响应分开,确保模型得出结论的透明度。

                      步骤 3:创建 Gradio 界面

                      现在我们已经设置了核心功能,我们将构建 Gradio UI。

                        interface = gr.Interface(    fn=query_qwq,    inputs=gr.Textbox(label="Ask a logical reasoning question"),    outputs=[gr.Textbox(label="Thinking Process"), gr.Textbox(label="Final Response")],    title="QwQ-32B Powered: Logical Reasoning Assistant",    description="Ask a logical reasoning question and the assistant will provide an explanation.")interface.launch(debug = True)

                        这个 Gradio 界面设置了一个逻辑推理助手,它通过函数接收用户输入的逻辑推理问题,gr.Textbox()并使用该query_qwq()  函数进行处理。

                        最后,该interface.launch()函数启动启用了调试的 Gradio 应用程序,允许实时错误跟踪和日志以进行故障排除。

                        图片

                        使用 Ollama 在本地运行 QwQ-32B 可实现私密、快速且经济高效的模型推理。

                        在一系列权威基准测试中,千问QwQ-32B 模型表现异常出色,几乎完全超越了OpenAI-o1-mini,比肩最强开源推理模型DeepSeek-R1:在测试数学能力的AIME24评测集上,以及评估代码能力的LiveCodeBench中,千问QwQ-32B表现与DeepSeek-R1相当,远胜于o1-mini及相同尺寸的R1蒸馏模型。

                        图片

                        大模型正在变得越来越高效,硬件门槛也在降低,未来 “个人 AI” 的可能性正逐渐变为现实。

                        你怎么看 本地 AI 取代云端 API 这个趋势?你会考虑部署 QwQ-32B 作为自己的私人 AI 吗?

                         

                         如何系统的去学习大模型LLM ?

                        大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

                        事实上,抢你饭碗的不是AI,而是会利用AI的人。

                        科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

                        与其焦虑……

                        不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

                        但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

                        基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

                        在这个版本当中:

                        第一您不需要具备任何算法和数学的基础
                        第二不要求准备高配置的电脑
                        第三不必懂Python等任何编程语言

                        您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

                        一、LLM大模型经典书籍

                        AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

                        在这里插入图片描述

                        二、640套LLM大模型报告合集

                        这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
                        在这里插入图片描述

                        三、LLM大模型系列视频教程

                        在这里插入图片描述

                        四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

                        在这里插入图片描述

                        五、AI产品经理大模型教程

                        在这里插入图片描述

                        LLM大模型学习路线 

                        阶段1:AI大模型时代的基础理解

                        • 目标:了解AI大模型的基本概念、发展历程和核心原理。

                        • 内容

                          • L1.1 人工智能简述与大模型起源
                          • L1.2 大模型与通用人工智能
                          • L1.3 GPT模型的发展历程
                          • L1.4 模型工程
                          • L1.4.1 知识大模型
                          • L1.4.2 生产大模型
                          • L1.4.3 模型工程方法论
                          • L1.4.4 模型工程实践
                          • L1.5 GPT应用案例

                        阶段2:AI大模型API应用开发工程

                        • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

                        • 内容

                          • L2.1 API接口
                          • L2.1.1 OpenAI API接口
                          • L2.1.2 Python接口接入
                          • L2.1.3 BOT工具类框架
                          • L2.1.4 代码示例
                          • L2.2 Prompt框架
                          • L2.3 流水线工程
                          • L2.4 总结与展望

                        阶段3:AI大模型应用架构实践

                        • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

                        • 内容

                          • L3.1 Agent模型框架
                          • L3.2 MetaGPT
                          • L3.3 ChatGLM
                          • L3.4 LLAMA
                          • L3.5 其他大模型介绍

                        阶段4:AI大模型私有化部署

                        • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

                        • 内容

                          • L4.1 模型私有化部署概述
                          • L4.2 模型私有化部署的关键技术
                          • L4.3 模型私有化部署的实施步骤
                          • L4.4 模型私有化部署的应用场景

                        这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

                        智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
                        评论
                        添加红包

                        请填写红包祝福语或标题

                        红包个数最小为10个

                        红包金额最低5元

                        当前余额3.43前往充值 >
                        需支付:10.00
                        成就一亿技术人!
                        领取后你会自动成为博主和红包主的粉丝 规则
                        hope_wisdom
                        发出的红包
                        实付
                        使用余额支付
                        点击重新获取
                        扫码支付
                        钱包余额 0

                        抵扣说明:

                        1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
                        2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

                        余额充值