报告:自然语言处理:大模型理论与实践(752页 PPT 合集)
主要内容 自然语言处理(Natural Language Processing, NLP)是计算机科学与人工智能交叉领域中的一门关键技术,其目标是使计算机能够理解、解释、生成人类语言。在当今人工智能时代,NLP技术已经深刻地渗透到我们日常生活的方方面面,从智能助手、语音识别到机器翻译和文本生成,NLP正以惊人的速度改变着我们的生活方式。
特别是,2022年底以ChatGPT为代表的大模型技术横空出世,进一步推动了新一代人工智能技术的发展。正是在此背景下,赵宇教授与任福继院士共同主编撰写了《自然语言处理:大模型理论与实践》,旨在为学术界和实务界提供一本系统性、前瞻性和实践性兼备的权威著作,帮助读者全面掌握自然语言处理的核心理论和前沿应用。
本教材以自然语言处理中语言模型为主线,主要内容分为三部分,包括语言模型基础、大模型理论和大模型实践。首先介绍了自然语言处理的背景知识。然后,在语言模型基础部分介绍了词向量、统计语言模型、神经语言模型和预训练语言模型。接着,在大模型理论部分介绍大模型的架构、训练、使用与评估等。最后,在大模型实践部分介绍了大模型的本地开发和应用开发等。
2亮点特色
第一,前沿性强。大语言模型的迅猛发展引起了世界各国学术界高度重视,但是,至今还没有看到可以作为高等学校教材的著作问世,本教材的出版正好弥补了这一缺陷。本教材涵盖了最新的科研成果,引用国内外文献近200余篇。
第二,知识体系严谨。本教材以语言模型为主线,涵盖了从基础理论到高级应用的全方位内容,逐步引导读者从基础的自然语言处理技术走向大模型的深度学习与实际应用。尤其是,在大模型部分涵盖了大模型架构、多模态大模型结构、预训练、微调、提示工程、涌现、评估、探讨等内容,知识体系严谨完备。
第三,规范实用。本教材不仅系统地提供了大模型的基础知识和前沿技术,还能让读者在实际操作中提升自身的开发和研究能力,探索大模型的深层理论和广泛应用。本教材对大模型的本地开发和应用开发提供了实战演练和实用的代码示例,对实际开发工作具有重要的指导意义。
3读者定位 本教材主要针对高校本科生、研究生以及教学科研人员,作为教学用书。当然,也适用于计算语言学家、语言学家、数据科学家和NLP开发人员等专业人士。
考虑到不同读者的学科差异,本教材在附录部分介绍了概率论、信息论、机器学习与强化学习等NLP交叉学科的基础知识。通过本教材,读者将能够:系统性地掌握自然语言处理的核心理论与技术;深入了解大语言模型的发展历程与最新进展;掌握大语言模型在实际应用场景中的技巧与优化方法;获得应对自然语言处理复杂挑战的实践经验。
星球·部分内容预览·AI大模型材料
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓