基于YOLOv5与改进遗传算法的动态路径规划方法研究
摘要
随着人工智能与机器人技术的飞速发展,能够在复杂、动态环境中进行自主导航与路径规划的智能系统成为了研究热点。传统路径规划方法在静态环境中表现良好,但在面对动态、未知的障碍物时,其适应性和实时性往往不足。本文提出一种融合计算机视觉与改进遗传算法的混合路径规划框架。该框架首先利用YOLOv5目标检测算法对环境的实时图像进行感知,快速、准确地识别出动态与静态障碍物,并将其位置、类别信息转化为规划空间的语义信息。在此基础上,针对标准遗传算法(GA)在路径规划中存在的早熟收敛、局部搜索能力差等问题,提出了一系列改进策略,包括:基于环境语义信息的自适应初始化种群策略、结合模拟退火思想的动态变异算子、以及引入精英保留与灾变机制。通过栅格法构建环境模型,将YOLOv5感知到的动态信息实时更新到地图中。仿真实验结果表明,与传统遗传算法、A*算法等相比,本方法在动态环境中能够规划出更安全、平滑且长度更优的路径,同时表现出更强的环境适应性和鲁棒性,为解决动态路径规划问题提供了一种有效的解决方案。
关键词: 路径规划;YOLOv5;遗传算法;计算机视觉;动态环境;目标检测
1. 引言
路径规划是移动机器人、自动驾驶车辆等自主系统的核心关键技术之一。其本质是在具有障碍物的环境中,按照某一性能指标(如路径最短、时间最少、能耗最低等)寻找一条从起始点到目标点的无碰撞安全路径。根据环境信息的已知程度,路径规划可分为全局规划(环境信息完

订阅专栏 解锁全文
2606

被折叠的 条评论
为什么被折叠?



