-
引言
随着无人机技术的快速发展,无人机在农业监测、交通管理、灾害救援等领域的应用日益广泛。然而,无人机采集的大量图像和视频数据需要高效的目标检测算法进行处理。本文将详细介绍如何使用YOLOv5算法构建一个完整的无人机目标检测系统,包括数据准备、模型训练、性能优化以及用户界面开发。 -
系统架构概述
我们的无人机目标检测系统主要由以下几个部分组成:
数据采集与标注模块:负责收集无人机拍摄的图像并进行目标标注
模型训练模块:基于YOLOv5的目标检测模型训练
推理检测模块:对新的无人机图像进行目标检测
用户界面模块:提供友好的交互界面
系统整体架构如下图所示:
text
[无人机图像采集] → [数据标注] → [模型训练] → [模型评估] → [部署应用]
↓
[用户界面集成]
3. 数据集准备
3.1 常用无人机目标检测数据集
VisDrone数据集:包含288个视频片段和10,209张静态图像,标注了10类目标
UAVDT数据集:专注于无人机视频中的车辆检测
Stanford Drone Dataset:包含8个场景中行人、车辆等目标的轨迹
DOTA数据集:大型航空图像数据集,包含15类目标
3.2 自定义数据集制作
对于特定应用场景,我们可能需要创建自己的数据集。以下是创建自定义数据集的步骤:
使用无人机采集图像(建议不同高度、角度和光照条件)
使用标注工具(如LabelImg)标注目标
将标注转换为YOLO
订阅专栏 解锁全文
236

被折叠的 条评论
为什么被折叠?



