开启智能体和知识库探索之旅:Dify配置连接大模型

本文是Dify访问大语言模型(云端与本地)的零基础操作指南,是我找了一台Win11家庭版的电脑,从头到尾配置的全过程,希望能帮助无软件开发经验的用户快速实现大模型调用。

一、Dify 调用大模型的两种核心方式

大语言模型按部署方式分为云端API模型和本地私有化模型。Dify对两者均提供可视化配置支持,无需代码即可完成接入。

  1. 云端模型(API调用)

特点:依赖第三方服务商算力,数据需传输至服务商服务器,适合快速验证和轻量级应用。

支持服务商:DeepSeek、智谱 AI、文心一言、通义千问等。

  1. 本地模型(私有化部署)

特点:数据完全本地处理,需自行部署模型服务(如 Ollama),适合高隐私场景。

常用工具:Ollama、LocalAI,支持 Llama3、DeepSeek-R1 等开源模型。

3、两种模型对比

维度云端模型本地模型
成本按Token计费(如 0.02 元/千 Token)无持续费用,需承担硬件成本(GPU/内存)
部署难度需安装OpenAI-API-compatible服务完成API配置需安装Ollama并调试网络
数据安全依赖服务商隐私协议数据完全本地化,符合金融/医疗合规要求
适用场景快速验证、低并发需求高频调用、高隐私要求的长期应用

4、两种模型引擎服务对比

维度OpenAI-API-compatible(如硅基流动、OpenAI云服务)Ollama
部署方式云端服务,依赖第三方服务器本地部署,数据完全私有化
核心目标提供标准化 API 接口,快速集成大模型能力简化本地大模型的部署与管理,支持私有化定制
模型选择固定服务商提供的模型(如 GPT-4o、DeepSeek云版本)支持Llama3、DeepSeek-R1、Mistral等开源模型自由切换
数据流向用户数据需传输至服务商云端服务器数据仅在本地设备处理,不外传

二、云端模型接入步骤(以 DeepSeek 为例)

  1. 注册并获取 API 密钥

    访问DeepSeek官网(https://platform.deepseek.com/) → 完成注册 → 进入控制台生成API Key。

img

img

img

img

  1. 在Dify中配置模型(基于OpenAI-API-compatible服务)

(1)部署Dify请参考《开启智能体和知识库探索之旅:Dify私有化部署》,没有开发经验的朋友按照步骤也可轻松完成部署。

(2)安装OpenAI-API-compatible服务

  • 登录Dify控制台 → 设置 → 模型供应商 → 搜索框中输入“OpenAI-API-compatible”,找到后单击“安装”

img

  • 安装完后会出现在模型列表中,如下图所示:

img

(3)在OpenAI-API-compatible插件服务中添加模型

  • 登录Dify控制台 → 设置 → 模型供应商 → 选择OpenAI-API-compatible → 单击添加模型按钮。

img

  • 打开添加模型界面后填写参数

模型名称:自定义(如 DeepSeek-R1-7B)

API Key:复制粘贴上面创建的密钥

API Endpoint:https://openapi.coreshub.cn/v1。

img

  • 点保存后显示出1个模型

img

三、本地模型接入方法(基于Ollama)

Ollama虽是一个本地部署的大模型管理平台,支持在本地运行各种开源模型,但是也兼容OpenAI的API接口。

1、部署Dify请参考《开启智能体和知识库探索之旅:Dify私有化部署》,没有开发经验的朋友按照步骤也可轻松完成部署。

2、Windows系统中安装Ollama

(1)打开Ollama官网(https://ollama.com/download)下载安装文件,我的电脑是windows11,我选择的是windows安装包,如下图所示,注意我的网络可能有点慢,我下载了2个小时,占用1G左右的硬盘空间。

img

img

(2)这里不推荐鼠标双击安装包安装,因为这种安装方式默认安装到C盘且不能自定义安装目录,安装完后大约占用5G硬盘空间如下图所示;这里个人推荐命令安装方式,我下面会详细介绍这种方式的安装步骤,没有开发经验的也不用担心,按照下面步骤操作轻松完成安装。

img

(3)按Win+R打开运行窗口,输入“cmd”后回车启动cmd,并定位到OllamaSetup.exe所下载的目录,如下图所示:

img

注意:“cd E:\download”跳转不过去,必须输入“cd /d E:\download”才能跳转到下载目录

img

(4)执行"OllamaSetup.exe /DIR=“D:\Video\Ollama"命令,DIR的值为"D:\Video\Ollama”,该值为Ollama的安装目录

img

img

(5)验证Ollama是否安装成功

  • 重新打开一个CMD输入“ollama -v”回车,如果显示如下图所示内容,表示Ollama安装成功了。

img

  • 打开浏览器地址栏输入“http://localhost:11434”后回车,如果显示如下图所示内容,表示Ollama安装成功了。

img

(6)成功安装后,Ollama默认是打开状态,此时我们先退出Ollama,如下图所示:

img

(7)成功安装完后,桌面上没有Ollama启动图标,在开始菜单中输入Ollama搜索查找,打开文件所在位置,选中并单击鼠标右键,显示更多选项/发送到/桌面快捷方式

img

img

img

3、配置Ollama环境变量

(1)打开配置环境变量界面

img

img

img

(2)新建环境变量“OLLAMA_MODELS”,将其设置为存放模型的地址(Ollama安装的根目录下新建一个Models文件夹),以节约C盘空间。

img

img

(3)新建环境变量“OLLAMA_HOST”,“0.0.0.0:11434”,让除本机以外的其他局域网机器也可以访问模型。

img

(4)新建环境变量需重启Ollama服务才能生效开始,桌面双击下图所示图标打开Ollama,服务启动时加载新建环境变量使其生效。

img

4、下载大模型

(1)打开Ollama官网(https://ollama.com/),单击Models连接

img

(2)搜索deepseek,我这里选择了7b

img

(3)复制下拉框后面的执行命令,ollama run deepseek-r1:7b

img

(4)在CMD中执行上面复制的命令下载ds大模型

上面我们修改了大模型的默认存储位置,下载需要打开CMD窗口,下载大家耐心等待一下,后面下载速度会越来越慢,我下载了五十分钟左右。

img

(5)如果出现下图所示的效果,表示下载完成

img

(6)验证DeepSeek,在DeepSeek下载完成后,在CMD中输入:Hello deepseek,如下图所示:

img

How can I assist you today?今天我能如何帮助您?今天有什么可以帮您?

5、在Dify中配置模型(基于Ollama服务)

(1)Dify中安装Ollama服务插件

  • 登录Dify控制台 → 设置 → 模型供应商 → 搜索框中输入“Ollama”,找到后单击“安装”

img

  • 安装完后会出现在模型列表中,如下图所示:

img

(2)在Ollama插件服务中添加模型

  • 登录Dify控制台 → 设置 → 模型供应商 → 选择Ollama → 单击添加模型按钮。

img

  • 打开添加模型界面后填写参数

    模型名称:自定义(如 DeepSeek-R1-Distill-Qwen-7B)

  • 基础 URL:

    本地部署(http://localhost:11434)/(http://127.0.0.1:11434)

    Docker部署(http://host.docker.internal:11434)

    云端部署(http://203.0.113.10:11434)。

  • 点保存后显示出1个模型

img

  • 点保存后,下图是大部分人会遇到的问题,原因是因为:容器与主机网络隔离问题,即使在本地也无法访问,请根据以下操作步骤配置网络。

img

  • Ollama模型命名规范,名称需严格遵循 : 格式(如 deepseek-r1:14b),Dify配置需完全匹配,如果确实不会写可以按Win+R打开运行窗口,输入“cmd”后回车启动cmd,执行“ollama list”查看Ollama已安装的模型的完整名称。

img

  • 网络配置,Docker默认有自己的网络命名空间,127.0.0.1localhost指的是容器内部,而不是宿主机,Ollama默认监听127.0.0.1,使用“http://host.docker.internal:11434”实现容器访问宿主机服务。
  • 添加模型填写参数如下图所示:

img

  • 如下图所示,表示ollama配置ds大模型成功

img

127.0.0.1localhost指的是容器内部,而不是宿主机,Ollama默认监听127.0.0.1,使用“http://host.docker.internal:11434”实现容器访问宿主机服务。

  • 添加模型填写参数如下图所示:

[外链图片转存中…(img-6StF8k1A-1747662343490)]

  • 如下图所示,表示ollama配置ds大模型成功

[外链图片转存中…(img-Jt7SyKB8-1747662343491)]

总结:通过上述方法,即使无开发经验也能轻松在Dify中灵活调用各类大模型,Dify+Ollama部署比较简单,对硬件要求也不高,主要是Docker的安装(换国内镜像)和局域网设置可能会遇到问题。部署完个人推荐应用路径:先试云端(用DeepSeek或智谱AI的免费额度快速验证应用逻辑)再转本地(数据量增大或隐私需求提升时,通过 Ollama 部署开源模型)。

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》*

内容包括:项目实战、面试招聘、源码解析、学习路线。

img

imgimgimgimg
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述
👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

**或扫描下方二维码领取 **

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值