空气动力学(笔记自留)-第二章

第二章 流体运动学基础

2.1 流体运动的描述方法和流场

采用“随体”观点的拉格朗日法和采用“当地”观点的和欧拉法。

2.1.1 拉格朗日法

沿用描述刚体运动的方法,着眼于流体质点/微团,跟踪质点的运动,记录质点在运动过程中各种物理量的变化规律。
1 . 描述函数形式与拉格朗日坐标
质点(a1,b1,c1)的轨迹方程:
x=x(a1,b1,c1,t),y=y(a1,b1,c1,t),z=z(a1,b1,c1,t)
a,b,c,t为拉格朗日坐标/变数,用矢径表示流体质点的位置,上述任意质点的轨迹方程可写为:r=r(a,b,c,t)。
流体的其他物理量可以写为a,b,c,t的函数
2 . 拉格朗日法中速度与加速度
V=∂r(a,b,c,t)/∂t
a=∂2r(a,b,c,t)/∂t2
3 . 拉格朗日法的应用

2.1.2 欧拉法

着眼于空间点

  1. 描述函数形式和欧拉坐标
    例如,流体质点的速度为V=V(x1,y1,z1,t),表示t时刻位于点(x1,y1,z1)上的流体质点当时的速度。
    由于空间点是任取的,位置坐标不再是时间t的函数,而是独立变量。x,y,z,t称为欧拉坐标/欧拉变数。
    需要注意,欧拉法中x,y,z,t是四个独立变数,如不赋予另外意义,不能有dx/dt等表达式。
  2. 欧拉法的特点和优点
    1 . 欧拉法是在选定的空间点观察不同时刻流过该点的不同流体质点的物理量,不需要识别特定的流体质点。考察对象为空间点,可以进一步拓展到空间的面或体。
    2 . 欧拉法建立方程相对困难。需要采用拉格朗日观点,做一定的转换,得到欧拉表述的方程。
    3 . 欧拉法关注指定空间区域的流动而非单个质点的详细情况符合实际问题的需要。
2.1.3 拉格朗日法和欧拉法的转换

欧拉法中,可以通过速度函数求出单个质点的运动轨迹。
拉格朗日法中,可以根据轨迹方程求出速度函数。

2.1.4 流场
  1. 概念:流体运动所处的空间,也就是被流体质点布满的空间或被流动参数布满的空间。
    采用欧拉法描述流动参数,就是给出流场的分布。
  2. 速度场:由流动空间各坐标点上的速度矢量构成的场,描述速度矢量的空间分布和分布随时间的变化。
    直角坐标系中可表示为:V(x,y,z,t)=u(x,y,z,t)i+v(x,y,z,t)j+w(x,y,z,t)k
    上式中,u,v,w为速度在三个指教坐标方向的分量,都既是空间坐标又是时间的函数。
    速度场是流体力学中最基本的场。流场的许多属性可以从速度场直接或间接导出。
    例如,从速度矢量的空间分布可以直接反映流体质点的运动状态,从速度分布函数可以分析流体微团的运动、变形和旋转特征,当已知流体的本构关系(应力与应变率的关系)后,从速度场可以计算流体的应力场。
  3. 定常流与非定常流
    1 . 定义:在流场的每一个空间点处流动参数都不随时间变化,或者说流场只是空间坐标的函数而与时间无关,这样的流场就被称为定常流场,流动称为定常流动。否则为非定常流场和非定常流动。
    设流动参数为B(x,y,z,t),定常流动的数学定义为:∂B/∂t=0。
    若B是矢量,定常流动值其大小和方向均不随时间变化,例如定常速度场表达为:V=V(x,y,z)
    流动是否定常并非完全由流动本身的特点决定,选择适当的坐标系可能使非定常流动问题转化为定常流动问题。
  4. 三维、二维、一维流
    1 . 定义:速度场必须用三个空间坐标描述,该流动为三维流动。某些特定情况下,速度场可简化为两个坐标或一个坐标的函数,称为二维流动或一维流动。
2.1.5 随体导数(物理导数、实质导数、质点导数)
  1. 定义:某个封闭流体“系统”(如流体微团)在运动过程中,其所具有的物理量对时间的变化率。
    欧拉法中流动特性是空间和时间的函数,需要从物理意义出发进行分析,写出随体导数在欧拉法中的表述形式,专门用D/Dt符号表示。
  2. 欧拉法中加速度公式
    加速度为DV/Dt=∂V/∂t+u∂V/vx+v∂V/∂y+w∂V/∂z=∂V/∂t+(V·▽)V
    ▽为哈密尔顿算子:▽=∂i/vx+∂j/∂y+∂k/∂z
    哈密尔顿算子可以进行矢量和微分运算。
  3. 随体导数公式的理解
    随体导数DV/Dt包括两部分:
    ∂V/∂t称为当地时间导数,也称当地加速度或局部加速度,表述(质点流过的)空间某固定点上,物理量V对时间的变化率,反映流场的不定常性。
    (V·▽)V称为迁移导数,代表质点在流场中移动几何位置所引起的速度V的变化率,反映流场的不均匀性。
2.2 流体运动的集合描述

采用几何图形描绘流动中质点的路径和运动方向,有助于对流场结构的定向认识和定量分析。

2.2.1 迹线(代表拉格朗日观点)

流体质点的运动轨迹,反映相当长时间内某一流体质点的运动状况。
对流动中的某一流体质点作标记,将其在不同时刻所在的位置点连成线就是该流体质点的迹线。
流场中实际存在的线,具有连续性,随时间增长不断延伸。定常流场中通过某固定点的迹线只有一条,非定常流场中,通过同一点的迹线可以有多条,不同时刻经过该点的流体质点可以走不通的轨迹线。

2.2.2 流线(对应欧拉法)

在给定瞬间t流场中的假想曲线,该曲线上各点处的切线方向都与流场该点处的速度矢量V方向一致(相重合),或者说与此时位于该点处的流体质点的速度方向一致。

  1. 流线方程及其与迹线方程的区别
    已知速度场V(x,y,z,t)=u(x,y,z,t)i+v(x,y,z,t)j+w(x,y,z,t)k,空间上某点的切线可表示为dr=dxi+dyj+dzk。流线上各点的切线方向于该点速度方向一致,即dr/V,则dx/u(x,y,z,t)=dy/v(x,y,z,t)=dz/w(x,y,z,t)
    上式为微分形式的流线方程,形式和迹线方程在形式上相同。流线方程反映某固定时刻t,位于流场中各不同空间点(x,y,z)的不同的流体质点的速度方向。迹线方程反映了某特定流体质点(a,b,c)在不同时刻t的速度方向。
    1 . 流线方程针对某固定时刻t,方程中t只是不变的参数,x,y,z为独立变量,代表空间任一位置,不同时刻t,流线方程不同。迹线方程针对特定流体质点。方程中t为自变量,x、y、z均为t的函数。对于不同质点,迹线方程不同。
    2 . 两方程中dx、dy、dz含义不同。流线方程中dx,dy,dz是同一时刻流线上两点之间的微元距离在x,y,z三坐标轴上的投影。迹线方程中的dx,dy,dz表示同一个流体质点在dt微元时间间隔内在x,y,z三个方向的位移。
    3 . 两方程中的u,v,w含义不同。流线方程中指某固定时刻t,流场中位于各不同空间点上的不同流体质点的速度分量。某一固定时刻,u,v,w是独立变量x,y,z的函数。迹线方程中u,v,w指同一流体质点(a,b,c)在不同时刻t的速度分量。对某一特定流体质点,u,v,w只是t的函数。
  2. 流线的性质
    1 . 流线的不相交性
    一般情况下,流线不能相交或分叉。
    三种例外:速度为零的点(驻点)、速度无限大的点(源点)和流线相切的点。
    2 . 流线的瞬时性
    流线是瞬时线,非定常流场中每一瞬时的流线形状均不相同,流线随时间变化。
    3 . 定常流动中流线与迹线的关系
    定常流动中,流线与迹线重合,形状不变,可用显示迹线的方法显示流线。
    质点在某点的速度方向和其迹线在该点的切线方向重合,迹线上质点在时刻t的流速与迹线相切。
    由于流场是定常的,在流场的同一空间点上,不同时刻(流过此点的不同流体质点)流速相同。
    严格表述迹线和流线的关系:定常流动中,t0时刻位于(a0,b0,c0)的质点的迹线与t0时刻经过点(a0,b0,c0)的流线重合,也与任何时刻经过该点的流线重合,因为定常流动中流线不随时间变化。
    4 . 定常流动中流线的不可跨越性
    定常流动中,流体质点沿着流线运动,流线是流体不可跨越的线。
2.2.3 流管和流面
  1. 定义:在流场中任意画一条不是流线的封闭曲线,在同一时刻过此曲线上的每一点作流线,由这些相邻流线所构成的管状曲面称为流管。
    定常流动中流管内的流体不能穿越流管,且流管形状不随时间改变。
    通过一条非流线的曲线(不封闭或封闭的)上每一点所作的那些相邻流线组成的曲面称为流面(分别是不合拢和合拢的)。
    定常流动中,流面是流动不能穿越的面。定常理想无黏流动中,壁面常作流面处理。
2.2.4 脉线
  1. 定义:脉线是在一段时间内相继通过空间某固定点的很多流体质点连成的线。
    又称色线、染色线、烟线或条纹线。
  2. 特征:定常流动中脉线的形状不变,与流线、迹线重合,常用于代表流线。
    非定常流中脉线与流线不重合。
    脉线是流动显示试验中最常用的线。
2.3 流体微团的运动分析
2.3.1 流体微团运动过程中形状变化特点
  1. 概念引入:
    同一时刻由确定的一组连续排列的流体质点组成的线为流体线,组成的面为流体面。
    可见流体微团的边界面为流体面,边界线为流体线。
    若流体线处处可微,称为连续流体线;若流体面处处光滑,称为光滑流体面。
    当连续介质假设成立时,流体运动具有连续流体线的保持性和光滑流体面的保持性,即连续可微的流体线在运动过程中始终保持为连续可微的流体线,且其上的流体质点的排列顺序不随时间变化,流体线两端的质点仍保持在流体线两端;光滑流体面在运动过程中始终保持为光滑流体面,其上流体质点的排列顺序也不随时间变化。
    正交的六面体微团,运动微小时间dt后,变为斜平行六面体微团。
2.3.2 流体微团的基本运动形式

微团除了能像刚体那样平移和转动外,还有变形运动。
分析微团运动时,选取的流体微团在初始时刻具有一定的质量和体积,形状可根据需要任取。
流体微团运动的基本运动形式包括屏东、转动、线变形运动和角变形运动。流体微团的一般运动时这几种基本运动形式的组合。

2.3.3 流体微团中毗邻点的速度关系

假设流场的速度分布是坐标的连续函数。t时刻微团上点A(x,y,z)的速度VA为:VA(x,y,z,t)=uA(x,y,z,t)i+vA(x,y,z,t)j+wA(x,y,z,t)k
速度导数张量D==[∂u/vx,∂u/∂y,∂u/∂z;∂v/vx,∂v/∂y···]
P点的速度Vp为VA+D=dr,其中dr=dxi+dyj+dzk。

2.3.4 流体微团基本运动形的分析(数学表达)

速度梯度的存在导致微团的旋转和变形

  1. 线变形
    此时微团的边界流体线没有方位变化。
    只有线变形的情况时异名偏导数为0的情况。
    速度导数中三个同名偏导数分别对应微团在三个方向的线应变率。
    略去高阶小量,体积应变率(单位体积在单位时间内的变化)为:∂u/∂x+∂v/∂y+∂w/∂z=▽·V。即速度的散度,三个同名偏导数之和对应微团的体积应变率,也称体膨张率,满足▽·V=εx+εy+εz,可利用数学中的奥式定理证明。
项目xyz
伸长量∂u·dx·dt/∂x∂v·dy·dt/∂y∂w·dz·dt/∂z
线应变∂u·dt/∂x∂v·dt/∂y∂w·dt/∂z
线应变率εx=∂u/∂xεy=∂v/∂yεz=∂w/∂z
  1. 角变形与旋转
    异名偏导数不为零,不再考虑微团的平移,设此时的同名偏导数为零,微团没有线变形。
    速度的异名偏导数不为零正式微团存在角变形和旋转运动的原因。
    1 . 定义:微团的旋转指微团整体像刚体一样的旋转,微团形状不变。
    微团的角变形指微团两正交边界流体线之间夹角的变化。
    2 . 表示:微团的角速度可由异名偏导数的差来表示,同时使速度旋度的一半:
    w=rotV/2=▽xV/2
    rotV=|i,j,k;∂/∂x,∂/∂y,∂/∂z;u,v,w|
    角速度矢量w的方向按右手定则确定,涡量在某一方向的分量为正是,代表绕该方向轴线逆时针旋转。
    对于微团的角变形运动,定义单位时间内一个直角的变化量为角变化率。对于xy平面内的角变形,角变化率记作2γz。γz=dβ/dt=(∂v/∂x+∂u/∂y)/2,类似,有γx=dβ/dt=(∂w/∂y+∂v/∂z)/2,γy=dβ/dt=(∂u/∂z+∂w/∂x)/2
    微团的角变形率可由异名偏导数的和项来表示。
2.3.5 亥姆霍兹速度分解定理

反过来看,可将流体微团的一般运动分解为四种基本运动

  1. 速度导数张量的分解
    Vp=VA+D^=dr
    右端第一项代表流体微团甘遂A点以速度VA平移;第二项是通过速度导致速度导数张量D=,将微团线变形、角变形和旋转所造成的P点与A点速度差别全部包含。
    根据张量分解定理,D=可以分解为一对称张量和一反对称张量的和:D==S=+A=,其中,对称张量为S==(D=+D=T)/2;反对称张量为A==(D=-D=T)/2
  2. 对称张量——应变率张量S=
    S=主对角线上的分量为微团的线应变率,其余分量为角变形率。张量S=对应着变形,称为应变变化率张量。S=主对角线上分量的和为三正交方向上线应变率之和,就是微团的体积变化率,也是速度矢量的散度∂x+∂v/∂y+∂w/∂z=▽·V=εx+εy+εz
  3. 反对称张量A=
    A==[0,-wz,wy;wz,0,-wy;-wy,wx,0],只包含三个分量的信息,分别对应微团旋转角速度矢量的三个分量。
  4. 速度分解定理
    Vp=VA+wxdr+S=A·dr
    式中,右端第一项是P跟随基点A的平移速度VA,第二项为流体微团整体绕过A点得到某轴转动对应的速度,第三项为微团变形所对应的速度
    流体速度分解定理只对流体微团成立,是局部性定理。
    流线为圆周,各流体质点均绕原点旋转,该流动中微团没有变形,且流动有旋,流体像刚体一样旋转,称这种流动为刚性涡流动/强迫涡流动。
    除原点外流动无旋,称该流动为点涡流动/自由涡流动。
    流体运动是否有旋,取决于微团是否有绕自身某轴的旋转运动,而非其运动轨迹,应根据微团角速度或速度矢量的旋度判断。
2.4 有旋流动

微团的旋转用角速度矢量w表征,是速度矢量旋度的1/2。速度的旋度又称为涡量,记作Ω:Ω=rotV=▽xV=2w
根据角速度w或涡量Ω是否为零,可以将流动分为无旋和有旋流动

2.4.1 有旋流动的一般概念、涡线和涡管
  1. 有旋流动和涡量场
    1 . 定义:如果一个流场各处的角速度w或涡量Ω基本上不为零,则该流场为有旋流场,流动为有旋流动。有旋流动也称为漩涡流动。
    2 . 涡量Ω和速度各分量的关系满足:Ωx=∂w/∂y-∂v/∂z,Ωy=∂u/∂z-∂w/∂x,Ωz=∂v/∂x-∂u/∂y
    在连续介质假设成立的前提下,欧拉描述法中涡量矢量是空间坐标和时间的连续函数,称为涡量场。
  2. 涡线
    1 . 定义:涡线是在某一瞬时有旋流场中的假想曲线,线上每一点的切线方向是位于该点的流体微团的转动角速度的方向。涡线可看作流体微团的瞬时转动轴线。
    2 . 涡线方程:dr×Ω=0,即dx/Ωx(x,y,z,t)=dy/Ωy(x,y,z,t)=dz/Ωz(x,y,z,t)
    与流线方程类似。
    3 . 涡管和涡面
    在有旋流场中取一条非涡线的封闭曲线L,通过L上各点作瞬时t的涡线,这些涡线围成的管状面称为瞬时t通过曲线L的涡管。涡线可以看成截面积趋近于0的涡管。
    涡面是给定瞬时,通过某一曲线(本身不是涡线)的所有涡线构成的曲面。当该曲线是封闭曲线且不位于涡面上时,此涡面成了涡管。
    4 . 涡通量
    1 . 定义:涡量Ω穿过流场中任一开口曲面A的通量,称为涡通量,记为:I=∬Ω·ndA
    式中,A为任意给定曲面,n为曲面微元dA法线方向的单位矢量。涡通量有称为旋涡强度,可用于衡量旋涡的强弱。
2.4.2 速度环量及其与涡通量的关系
  1. 速度环量定义:在流场中取任一曲线,速度沿该曲线的线积分称为沿曲线的速度环量τAB=∫Vds=∫Vcosαds=∫udx+vdy+wdz
    上式中,α是速度矢量V和曲线微元ds的夹角。
    环量是标量,注意曲线是有方向的。
    大多数情况下需要计算绕封闭曲线1的环量,有τL=∮Vds=∮(udx+vdy+wdz)
    对于封闭曲线的环量,规定积分时的绕行方向是逆时针方向,即封闭曲线所包围的区域总在行进方向的左侧。当沿顺时针积分是,式前应加负号。
  2. 速度环量与涡通量的关系
    可由数学中等的斯托克斯定理确定速度环量与涡通量的关系。
    流场中曲面S为张在封闭曲线L上的任意连续开口曲面,S的外法向单位矢量n与L的正向构成右d手系。速度矢量沿封闭曲线L的环量等于涡量矢量通过曲面S的涡通量,即τL=∮Vds=∮(udx+vdy+wdz)=∬(∂w/∂y-∂v/∂z)dydz+(∂u/∂z-∂w/∂x)dxdz+(∂v/∂x-∂u/∂y)dxdy或采用矢量写为τL=∮Vdl=∬(▽×V)nds=∬Ωnds=I
2.4.3 涡管强度守恒定理及推论

涡管强度守恒定理是关于旋涡的运动学定理

  1. 涡管强度守恒定理
    涡管强度守恒定理:同一瞬时,沿涡线或涡管的旋涡强度(或涡通量)不变。
    涡通量(旋涡强度)沿涡管不变,并且绕涡管上任意一条不与涡线共面的曲线环量相等。涡通量称为涡管的强度。
    该定理只关系到同一时刻在涡管不同截面上涡通量守恒的问题,不能用于涡通量随时间的变化。
  2. 涡管强度守恒定理的推论
    涡管不能在流体中中断,可以延伸至无限远,可以自连接成一个涡环(不一定是圆环),也可以止于边界,包括固体的边界或自由边界(如自由液面)。
2.4.4 旋涡的诱导速度

涡旋的存在对应着流体中有一定的速度分布,该速度称为“诱导”速度。
涡旋和对应的速度场是同时存在、出现的,无先后之分和因果关系。
涡量场和速度场之间存在以下关系:
Ω(x,y,z,t)=▽×V(x,y,z,t)
τL=∮Vdl=∬(▽×V)nds=∬Ωnds=I

  1. 线涡的诱导速度
    实际流场中存在这样的情况:涡量集中分布在一条曲线的附近区域中,而在这个区域之外的流动是无旋的。
    设想涡量集中分布在截面积△A很小的涡管中。涡管的强度为∬ΩndA=τ
    式中,τ为该细涡管的涡通量,也是沿绕细管的曲线的环量。可以一条涡线代替细涡管,涡线要达到该细涡管的效果,线涡的强度为τ。
    涡线上微端ds=对线外某点P(x,y,z)产生的诱导速度为dV(x,y,z)=τds×r/4πr3
    式中,r是涡线微端ds至点p的矢径,速度dV垂直于ds和r组成的平面,方向由右手定则确定。写成标量形式为dV=τdssinθ/4πr^2^,式中θ是ds和r的夹角。
    上述线涡的速度场公式,又称毕奥-萨瓦公式。流体力学中,也常吧线涡对应的速度场称为线涡引起的诱导速度。
  2. 直涡线的诱导速度
    当涡线是直线时,可积分得到简单的诱导速度公式。对上式沿AB积分,可得到整个涡线AB在P点产生的“诱导”速度为:V=τ/4π·∫dssinθ/(h/sinθ)^2^,代入ds=hcsc^2^θdθ,得到V=τ/4πh·(cosθ1-cosθ2)
    式中,θ1和θ1分别是涡线两端点A、B与P的连线之间的夹角。速度方向根据右手定则确定。
    如果涡线一头是无限长的,V=τ/4πh·(cosθ1+1)
    如果涡线两端都延伸到无限远,V=τ/2πh
    上述有限长涡线的诱导速度公式只是反映了该涡段对诱导速度的贡献,计算实际流场速度时要计及所有涡段的影响。
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
R语言实战笔记第九章介绍了方差分析的内容。方差分析是一种用于比较两个或多个组之间差异的统计方法。在R语言中,可以使用lm函数进行方差分析的回归拟合。lm函数的基本用法是: myfit <- lm(I(Y^(a))~x I(x^2) I(log(x)) var ... [-1],data=dataframe 其中,Y代表因变量,x代表自变量,a代表指数,var代表其他可能对模型有影响的变量。lm函数可以拟合回归模型并提供相关分析结果。 在方差分析中,还需要进行数据诊断,以确保模型的可靠性。其中几个重要的诊断包括异常观测值、离群点和高杠杆值点。异常观测值对于回归分析来说非常重要,可以通过Q-Q图和outlierTest函数来检测。离群点在Q-Q图中表示落在置信区间之外的点,需要删除后重新拟合并再次进行显著性检验。高杠杆值点是指在自变量因子空间中的离群点,可以通过帽子统计量来识别。一般来说,帽子统计量高于均值的2到3倍即可标记为高杠杆值点。 此外,方差分析还需要关注正态性。可以使用car包的qqplot函数绘制Q-Q图,并通过线的位置来判断数据是否服从正态分布。落在置信区间内为优,落在置信区间之外为异常点,需要进行处理。还可以通过绘制学生化残差的直方图和密度图来评估正态性。 综上所述,R语言实战第九章介绍了方差分析及其相关的数据诊断方法,包括异常观测值、离群点、高杠杆值点和正态性检验。这些方法可以用于分析数据的可靠性和模型的适应性。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [R语言实战笔记--第八章 OLS回归分析](https://blog.csdn.net/gdyflxw/article/details/53870535)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【执珪】瑕瑜·夕环玦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值