空气动力学(笔记自留)-第五章

探讨了马赫数大于0.3时气体可压缩性的考虑因素,推导声速计算,分析马赫锥现象。研究绝热流与等熵流中流动参数变化,涉及激波与膨胀波,特别是斜激波特性。变截面管道流动中,介绍了准一维流动的控制方程与等熵条件下的流动参数变化规律。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第五章 无黏可压缩流动

当马赫数(气流速度与声速之比)大于0.3时,就必须考虑气体的可压缩性。首先通过分析气体经过小扰动波的流动导出声速,并讨论马赫数在反映小扰动传播范围上的物理含义。对于可压缩流动,质量方程和动量方程还不能封闭求解,必须联立能量方程。本章从无黏的一维定常绝热流总焓方程出发,导出各种形式的能量方程,给出定常绝热流和等熵流中各流动参数沿流线的变化关系。在此基础上,研究几类最简单的绝热或等熵可压缩流动:超声速流动中的激波和膨胀波,气体沿变截面管道的流动

5.1 声速和马赫锥

本节通过对小扰动波应用质量和动量方程,导出小扰动波的传播速度与气流热力学参数的关系。进一步研究马赫数的含义,从马赫数为气流速度与小扰动传播速度之比的角度分析不容马赫数是扰动传播的特点。

5.1.1 声速计算式的导出

声音的传播通常看成有饶东元连续发出的扰动界面。三维空间中扰动面是球面,但在以球面形式传播的扰动面上,所有微小的微元面都可以近似看做平面,且与传播方向是垂直的。

  1. 跨过声波的流动分析
    取地面坐标系,所观察到的流动就是非定常流动。如果将坐标系建立在声波上,则声波不动,波前气流以速度a从左向右流向声波。气流通过声波后进入受扰动区,气流速度较波前有微小变化。声波坐标系下,流动是定常的。
    气体经过声波前后的状态变化可认为是一个绝热过程,来不及与环境之间进行热交换。并且声波区域所有参数的梯度都很小——通过声波压力、温度、密度和速度的变化量都是无限小量,于是该过程中的耗散现象可以忽略不计。可见这是一个满足绝热和可逆(无耗散现象)的流动,也就是的等熵流动。
  2. 声速与波前后压力密度变化的关系
    流动可视为一维流动。取一个包含声波在内的微小矩形控制体,应用积分形式的控制方程解决问题。定常、一维流动条件下,由积分形式的质量方程得ρaA=(ρ+dρ)(a+dv)A
    式中,A为左右控制面的面积。略去高阶小量后,可得a=-ρdV/dρ
    应用积分形式的动量方程,不计黏性力,略去彻体力,整理得a^2=dp/dρ。
    由于气流经过声波的流动过程是等熵的,上式可改写为:a^2=(dp/dρ)等熵=(dp/dρ)s,则a=sqrt((dp/dρ)s)
    即为声音在气体中的传播速度的基本表达式,根据气体弹性模量的定义,可知表达式与物理学中给出的声速公式a=sqrt(Es/ρ)是一样的。
    特别,对于量热完全气体,其等熵关系式为p/ρ^γ=C或p=Cρ^γ
    将上式对ρ求导,即得(∂p/∂ρ)s=Cγρ^γ-1=γCρ^γ-1=γp/ρ=γRT
    从而量热完全气体的声速为a=sqrt(γRT)
5.1.2 小扰动影响区的划分,马赫锥

飞行器在空气中飞行时,对周围空气产生扰动。如为微小扰动,则以声速有扰动源向各个方向传播。但扰动在飞行器运动空间的传播范围因飞行器的运动速度不同而变现出不同特点。下面通过一个微小扰动源(代表飞行器)的运动和从其上发出的声波的传播说我们会飞行器以不同速度飞行时扰动传播的不同情况。

  1. 扰动源在静止空气中空气中运动时其小扰动的传播
    假设微小的扰动源每隔△t时间发出一次微小扰动,每次扰动所引起的压力等所有参数的变化都是极微小的,它们对声速的影响可以忽略不计。所以每次扰动都以相同的声速a向四周传播。
    1 . 当扰动源(以实心圆点表示)不动时,不同时刻发出的速度相同的小扰动波的波阵面为同心球面。在扰动源左方的观察者“只闻其声,不见其形”。
    2 . 当扰动源以速度V<a向做运动时,不同时刻发出的扰动波的起始位置(扰动源)依次左移,因此后发出的扰动波的球形波阵面往左偏移,这种情况下在扰动源左方的观察者是“先闻其声,后见其形”的。
    3 . 当扰动源以声速即V=a向左运动时,后一个扰动波的起始位置比其前一个的正好左移a△t,因此不同时刻发出的扰动波的球形波阵面在左面相切。扰动源也紧随扰动波,在扰动波左方的观察者是同时“闻其声,观其形”的。
    4 . 当扰动源以速度V>a向左运动时,后发出的扰动波的起始位置向左的偏移超过了前一个扰动波向左的波阵面,后发出的波在向左方向都走了先发出的波前面,而扰动源自己走在扰动波左方。在扰动源左方的观察者是“先观其形,后闻其声”的。
  2. 固定扰动源的扰动在直匀气流中的传播
    研究流动问题时常将坐标系建立在飞行器上,把飞行器在静止大气中的匀速飞行转换为均匀气流以大小相同而方向相反的速度从远处向固定的飞行器流来。不同气流速度下,飞行器(固定的扰动源)发出的扰动在气流中的传播表现出不同特点。、设想O点有一个固定扰动源,在静止气体中产生的每个小扰动都以声速向各个方向传播。如果气流是运动的,则扰动的传播速度是其在静止气体中的传播速度与气流速度的叠加。如果来流速度为V∞,则自扰动源发出的小扰动传播的绝对速度就是V∞+aer,er为从扰动源出发的径向单位矢量。小扰动在气流中的传播的范围与气流速度和声速之比(即马赫数Ma)有密切关系。
    1 . 气流静止时:t=0时刻扰源发出的扰动波在△t、2△t和3△t时刻的波阵面构成同心球面。足够长时间后,扰动会波及全流场。
    2 . 压声速流动时:t=0时刻由O点发出的扰动,经△t时间,其波阵面将到达以O1点为中心、a△t为半径的球面上,在2△t时刻,这个波阵面又将传播到以O2点为中心、2a△t为半径的球面,依此类推。由于V∞<a,因此t=0时刻发出的扰动在不同时刻的波阵面是一组对绕流O偏心的球面。O点产生的小扰动仍能传遍全流场,不过在逆流方向传得慢,顺流的方向传得快。
    3 . 声速流动时:由于V∞=a,因而OO1=V∞△t,即不同时刻的波阵面构成一组在扰动源O点具有公切线的球面。所以由O点发出的小扰动,在任何时刻都不能超过x=0的平面,只局限在x≥0的半个空间(扰动源的下流)传播。
    4 . 超声波流动时:在t=0时刻发出的微小扰动,在△t、2△t、3△t时刻,其波阵面分别为以O1、O2和O3点为中心的球面,因为OO1>a△t、OO2>2a△t、OO3>3a△t,因此扰动源将始终位于这些球面外,在它们的上游。或者说,扰动波阵面始终在扰动源的下游。
  3. 马赫锥
    超声速流动中,扰源在某一时刻发出的小扰动在不同时刻的波阵面(球面)形成了圆锥状的包络面。或者说,扰源在不同时刻发出扰动的波阵面在某一时刻形成了圆锥状的包络面。该包络面的顶点在扰动源,以来流速度方向为中轴线,其半顶角η满足方程:sinη=a/V=1/Maη=arcsin(a/V)=arcsin(1/Ma)
    通常称η为马赫角,称这个圆锥状的包络面为马赫锥,而把锥面的母线称为马和县。可见超声速气流中,小扰动的传播区域局限在以扰动源为顶点,以气流速度方向为轴线的后马赫锥内。
    马赫数越小,马赫角η越小,η的最大值为π/2,对应于马赫数Ma=1。当Ma<1时,就不存在马赫角的概念了。所以说马赫角、马赫锥、马赫线都只存在于超声速流场。超声速流动中的小扰动波也称为马赫波。气流经过马赫波后,p、ρ、T若增加,也称为弱压缩波(气流速度V减小);p、ρ、T若减小,也可称为膨胀波(V增加)。
  4. 影响域和依赖域
    从上面对不同速度气流中扰动的传播特点分析得知,亚声速流场中某点的扰动能传遍各处,而超声速流场中小扰动的传播却只局限于以扰动源为顶点的后向马赫锥中。这一物理现象的根本区别也是亚声速流和超声速流控制方程的数学性质不同的体现。
    偏微分方程的数学类型可分为椭圆型、抛物型和双曲型。三种类型的方程其解的依赖域和影响域不同。方程解的影响域在物理上就是扰动的传播区域,描述流场中某点P扰动波及的范围。依赖域则是描述能够影响某点P的区域。椭圆型方程的影响域和依赖域均为全流场;对抛物型方程,某点P的影响只涉及其下游的半无限区域,某点的依赖域则是其上游的半无限区域;而对双曲型方程,P点的影响域是由过P点的特征线所围的“下游”区域,依赖域则是由特征线所围的“上游”区域。
    根据亚声速和超声速流动中扰动传播范围可知,亚声速流动的影响域和依赖域均为全场,超声速流动的影响域和依赖域则都是有限的。这种本质差别在数学上表现为:定常的欧拉方程组在亚声速流动时属于椭圆型方程,而在超声速流动中则属于双曲型方程。对超声速流动,对某点,除了上述表征扰动传播区域(影响域)的马赫锥(又称后向马赫锥)外,也常以某点为顶点、马赫角为半锥角,逆流动方向向前做圆锥,该锥称为前向马赫锥,表征该点的依赖域。
5.2 绝热流和等熵流的基本关系

本章限于讨论一维流动(或者说沿流线的流动)和准一维流动,并且只研究绝热流动和更特别的等熵流动。在一维定常绝热流总焓方程的基础上,再应用热力学关系式(完全气体状态方程,焓、内能与温度的关系,声速与温度的关系),写出其他形式的绝热流能量方程,给出各参数沿流线的变化关系;特别地,对等熵流,利用等熵关系式(等熵条件下温度、密度和压强的关系),得到等熵流动中压力、温度、密度与马赫数的关系,这些称为等熵流的基本关系。
在不可压流动中,伯努利方程格外重要,它给出了速度和压强的关系。本节对可压缩的等熵或绝热流导出的基本关系在可压缩流动中的重要性可以和伯努利方程在不可压流动中的重要性相比拟。

5.2.1 一维定常绝热流能量方程及其特征常数
  1. 能量方程的各种形式
    第3章已给出了微分形式的理想无黏流总焓方程。当流动绝热、定常(从而q·=0、∂p/∂t=0),且不计彻体力时,总焓方程成为ρD(h+V^2/2)/Dt
    这说明对定常绝热流动,流体质点或微团在流动过程中(沿迹线)其总焓不变。因为是定常流,流线和迹线重合,所以说明流线总焓不变。也就是说,定常无黏绝热流动中,流线上任意两点的总焓相等,等于一常数:h1+V1^2/2=h2+V2^2/2=h+V^2/2=const
    第三章中已经给出了积分形式的能量方程,方程适用于在流体控制面上黏性力做功可以忽略的流动。特别,对于一维定常绝热流动,并且不考虑彻体力做功Wf·和流体对固体物质的做功Ws·时,积分形式的能量方程成为:-(h1+V1^2/2)ρ1V1dA+(h2+V2^2/2)ρ2V2dA=0
    式中,dA为垂直于流速的流管横截面积,对一维流动,下标1和2分别代表入口和出口控制面上参数值。又由质量守恒可知一维定常流中:ρ1V1dA=ρ2V2dA
    所以一维定常绝热流动积分形式的能量方程可进一步写为h1+V1^2=h2+V2^2
    可见该方程与沿流线成立的总焓方程形式相同,但总焓方程适用于无黏绝热流动,沿流线上各点都成立;移位顶红吃那个绝热流动积分形式的能量方程应用范围更大,只要求流管入口和出口两截面处满足理想无黏绝热连续流条件,两截面之间可以存在间断和黏性损耗。
    上述总焓形式的能量方程可以写成不同的形式,对于量热完全气体,有h=cpT=γ/γ-1·RT=a^2/γ-1=γ/γ-1·p/ρ
    上面用到了热完全气体的声速公式a=sqrt(γRT)。于是能量方程可以由以下几种形式:
    cpT+V^2/2=const
    γ/γ-1RT+V^2/2=const
    a^2/γ-1+V^2/2=const
    γ/γ-1·p/ρ+V^2/2=const
    它们描述了一维定常绝热运动中流体质点的速度变化与温度、当地声速等参数变化的关系。
  2. 能量方程的特征常数
    上面各种形式的能量方程右边的常数就是单位质量气体的总焓,是静焓与动能之和。该常数常用某个参考状态的物理量来表示,这些参考状态的物理量就称为特征常数。常用的参考状态有三种:1. 速度为零的滞止状态(参数下标用“0”表示);2. 温度达到绝对零度是的最大速度(Vmax)状态;3. 流速等于当地声速时的临界状态(参数上标用“”表示)。气体一维定常流动中的任何一个状态都可以假想地通过绝热等熵的过程转变为对应的参考状态,用这些特征常数来表征该状态下气流的总焓,不管实际流动过程是否绝热等熵。
    1 . 滞止参数
    假定一个定常流动,流体质点(微团)在流动过程中绝热地减速到速度为零,且过程中无不可逆现象发生,也就是说流动是绝热等熵滞止到速度为零的。这时气流参数称为滞止参数,或称驻点参数,用下标“0”表示。在物理上对应:风洞储气罐的气体参数或理想无黏流动时驻点的气体参数。有h+V^2/2=h0=cpT0=γ/γ-1·RT0=a0^2/γ-1=γ/γ-1·p0/ρ0
    式中,h0、T0、p0、ρ0分别称为总焓、总温、总压和总密度或滞止焓、滞止温度、滞止压力和滞止密度,以区别静焓h、静温T、静压p和密度ρ。a0称为驻点声速。“静”的含义指站在与气体质点一起运动的坐标系上,相对于气体是静止地在观测参数,相对于气体是在静止地观测参数。静压是仅仅考虑气体分子随机运动产生的压力贡献,静温表征的就是分子随机运动的能量。
    气体静焓是内能e与p/ρ之和,p/ρ可看作单位质量气体具有的压力能,p/ρ越大,气体能通过压力做功的能力越大。因此运动气体的总焓以及静焓与动能之和,可以看做包含压力能在内的气流的总能量一维定常绝热流动不同形式的能量方程中右端的常数旗帜指的都是气流总焓,也就是气流的总能量。能量方程描述了不同形式的气流能量(内能、动能和压力能)转换的数量关系,转换过程中总能量是守恒的。
    可以用滞止参数表征上面各种形式能量方程中的常数(总焓),尽管所研究的实际流动中可以不出现流速为零的状态。采用滞止参数表示的一维定常绝热流动的能量方程为:
    cpT+v^2/2=CpT0
    γ/γ-1RT+V^2/2=γ/γRT0
    a^2/γ-1+V^2/2=a0^2/γ-1
    γ/γ-1p/ρ+V^2/2=γ/γ-1p0/ρ0
    可见h0、T0、p0/ρ0、a0的大小均可反映气流总能量的大小。
    2 . 最大速度
    设想气
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【执珪】瑕瑜·夕环玦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值