【应用统计学】参数统计-抽样分布

这篇博客深入探讨了参数统计中的抽样分布,包括放回抽样和不放回抽样的样本平均数分布,以及样本成数的抽样分布。文章通过实例解析了在总体服从正态分布和不完全服从正态分布时,样本平均数如何近似服从正态分布,并指出在一定条件下,不放回抽样可近似用放回抽样处理。此外,还讨论了样本成数的抽样分布情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、样本平均数的抽样分布

1.放回抽样的样本平均数分布。

(1)当总体服从正态分布时,根据正态分布再生定理,样本平均数服从正态分布。
(2))当总体不服从正态分布时,根据中心极限定理,当n充分大时(通常要求n≥30),样本平均数近似服从正态分布。

 

例5-1 某班组有8名工人,他们的单位工时组装零件个数分别是20、26、18、20、19、22、21、18个,现用放回抽样方式从8个工人中抽出4人,计算样本的单位工时平均计件数的抽样平均误差。
解:总体分布的平均数与方差分别是:

  则抽样平均误差为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值