看看Grok3怎么说-对DeepSeek Prover-V2怎么看?

#王者杯·14天创作挑战营·第1期#

关键要点

  • 研究表明,DeepSeek Prover-V2 在形式化定理证明领域表现突出,尤其在 Lean 4 中。
  • 它在 MiniF2F-test 上达到 88.9% 的通过率,解决 PutnamBench 的 49 个问题。
  • 模型采用子目标分解和强化学习,适合数学研究,但不适合通用任务。
  • 社区对其创新性评价较高,但存在上下文维护和数据透明度的争议。

概述

DeepSeek Prover-V2 是一款由 DeepSeek AI 开发的开源大型语言模型,专为 Lean 4 的形式化定理证明设计。它通过子目标分解和强化学习技术,在数学证明领域表现出色,尤其在基准测试中取得显著成果。然而,其专注于特定任务可能限制了通用性,社区对其创新性和潜在局限性有不同看法。以下是详细分析。

性能与特点

DeepSeek Prover-V2 在 MiniF2F-test 上达到 88.9% 的通过率,并成功解决 PutnamBench 的 49 个问题(共 658 个),显示出强大的数学证明能力。模型采用递归定理证明管道,利用 DeepSeek-V3 进行子目标分解,并通过强化学习整合非正式和正式数学推理。这种设计使其特别适合处理高中和大学水平的数学竞赛问题。

技术创新

模型的关键创新包括子目标分解和冷启动训练过程,通过合成证明数据创建链式思维过程。这种方法使它能够处理复杂问题,并与 DeepSeek-V3 的逐步推理结合,提升了性能。它提供 7B 和 671B 参数的版本,分别基于 DeepSeekMath 和 DeepSeek-V3,满足不同计算需求。

社区反馈与争议

社区对 DeepSeek Prover-V2 的反馈总体积极,认为其子目标分解能力直观且强大,尤其在数学和代码问题解决中表现优异。例如,一位用户分享它在 openrouter.ai 上首次成功解决 Lean 定理,显示其实用性。然而,也存在争议,如训练数据是否包含 Putnam 答案的问题,以及在大型项目中维护上下文的挑战。

局限性与适用性

尽管表现优异,DeepSeek Prover-V2 的狭窄聚焦使其不适合通用任务,如日常聊天。社区指出,在北美工作时间段可能面临容量限制,建议使用 openrouter.ai 缓解。此外,其性能依赖于特定基准测试,实际应用中可能受限于上下文管理和数据透明度。

未来展望

社区建议未来可发展代理 AI 团队系统,或公开人类-AI 交互数据以提升透明度。模型的开源特性(如在 GitHubHugging Face 提供)促进了合作,预计将推动形式化数学研究的发展。


详细报告

DeepSeek Prover-V2 是 DeepSeek AI 于 2025 年 4 月 30 日发布的一款开源大型语言模型,专为 Lean 4 的形式化定理证明设计,当前时间为 2025 年 5 月 4 日晚 9:02 JST。本报告基于公开信息,分析其性能、技术细节、社区反馈及未来潜力,旨在为用户提供全面理解。

背景与发布

DeepSeek Prover-V2 建立在 DeepSeek-V3 之上,后者采用混合专家(MoE)架构,拥有 671 亿参数。V2 版本专注于形式化定理证明,特别针对数学竞赛问题,如高中和大学水平的题目。其发布信息可在 GitHubHugging Face 找到,显示其开源策略促进了社区参与。

技术细节

模型采用递归定理证明管道,利用 DeepSeek-V3 进行子目标分解和形式化。冷启动训练过程包括:

  1. 提示 DeepSeek-V3 将复杂问题分解为一系列子目标。
  2. 合成已解决子目标的证明,形成链式思维过程。
  3. 结合 DeepSeek-V3 的逐步推理,创建强化学习的初始冷启动数据。

这种方法整合了非正式和正式数学推理,增强了模型在形式化证明中的能力。DeepSeek Prover-V2 提供两种参数规模:

  • DeepSeek-Prover-V2-7B,基于 DeepSeek-Prover-V1.5-Base,32K 令牌上下文。
  • DeepSeek-Prover-V2-671B,基于 DeepSeek-V3-Base,适合高性能计算。

下载链接分别为 DeepSeek-Prover-V2-7BDeepSeek-Prover-V2-671B,数据集在 DeepSeek-ProverBench 提供。

性能指标

根据 arXiv 论文,DeepSeek Prover-V2 在以下基准测试中表现优异:

  • MiniF2F-test:通过率 88.9%,证明生成准确性高。
  • PutnamBench:解决 49/658 个问题,解决率约 7%,显示其在挑战性数学问题上的能力。
  • ProverBench:引入 325 个形式化问题,包括 15 个近期 AIME 竞赛问题(2024-2025 年),成功解决 6 个。

与 DeepSeek-V3 比较,V3 在 AIME 问题上通过多数投票解决 8/15 个,显示 V2 在形式化证明中的特定优势。

社区反馈

Hacker News 讨论 显示,社区对 DeepSeek Prover-V2 的反馈总体积极:

  • 用户赞赏其子目标分解能力,认为直观且强大,类似于教初级工程师分解多周项目为小任务。
  • 一用户分享在 openrouter.ai 上首次成功解决 Lean 定理(convergesTo_unique),基于 mathematics_in_lean.pdf,显示其实用性。
  • 技术洞见指出,子目标分解区别于之前的 Kimina Prover(生成完整证明无子目标),可能带来错误/证明状态反馈的未来研究方向。

然而,也存在挑战:

局限性与适用性

DeepSeek Prover-V2 的狭窄聚焦使其不适合通用任务,如日常聊天。社区建议不推荐用于 casual chat(如 DeepSeek chat),更适合专业数学证明。访问性方面,可在 openrouter.ai 免费运行,但不支持 ollama(如 "ollama run deepseek-ai/DeepSeek-Prover-V2-7B")。

未来方向

社区提出未来可能发展代理 AI 团队系统,如 "architect" AI 指导专业执行 AI,使用工具如 roo code(roocode.com/features/boomerang-tasksroocode.com/features/custom-modes)。另有建议公开人类-AI 交互数据,类似 "AI 时代的集体维基百科"。

数据与来源

以下是关键性能数据的汇总:

基准测试通过率/解决率备注
MiniF2F-test88.9%证明生成准确性高
PutnamBench49/658(约 7%)挑战性数学问题解决能力
ProverBench (AIME)6/15近期竞赛问题,显示形式化能力

这些数据来源于 arXiv 论文GitHub,确保信息可靠性。

结论

DeepSeek Prover-V2 在形式化定理证明领域表现突出,其开源策略和社区参与度高,预计将推动数学研究发展。然而,其局限性如上下文维护和数据透明度需进一步解决。未来,结合代理 AI 系统和公开数据可能进一步提升其潜力。


关键引文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

释迦呼呼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值