080python农业病虫害检测pyqt版本

该博客介绍了使用Python的PyQT界面结合深度学习模型进行农业病虫害检测的方法。涉及的模型包括CNN的多种变体如ResNet、VGG和YOLO系列用于目标检测与图像分割。文章提供了数据集处理、模型训练及PyQT界面的代码示例,并展示了训练过程中的性能指标与识别效果。
摘要由CSDN通过智能技术生成

卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型
目标检测一般是yolov3、yolov4、yolov5、yolox、PSPnet、faster_rcnn、SDD等
图像分割一般是Unet、mask-rcnn、PSPnet、yolov5-segment等

​demo仓库和视频演示找080期:

银色子弹zg的个人空间-银色子弹zg个人主页-哔哩哔哩视频

效果展示图如下:

 代码文件展示如下:

运行01数据集文本生成制作.py可以读

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值