机器学习-卷积神经网络CNN中的单通道和多通道图片差异

背景

最近在使用CNN的场景中,既有单通道的图片输入需求,也有多通道的图片输入需求,因此又整理回顾了一下单通道或者多通道卷积的差别,这里记录一下探索过程。

结论

直接给出结论,单通道图片和多通道图片在经历了第一个卷积层以后,就没有单通道或者多通道的区别了,剩下的网络可以采取完全一样的结构。这也为我们使用各种各样的网络架构,resnet,Alexnet,vgg提供了方便,因为他们都是为了跑ImageNet而设计的特定输入。

图解

1.成员介绍

在CNN中涉及到的主要就是image kernel bias这三个元素。这里image表示是首层的输入,后边卷积层的impute都是前边的output,与首层操作类似,不再多说。

2.单通道图片卷积过程

可以看到,通过对应位置相乘再相加,结合bias,最终得到feature map中的一个元素,所以卷积核的一次计算只得到一个数。当卷积核刷遍整张图片以后,得到了一个完整的feature map。这个东西将作为下一层的输入,传递下去。

通常来说,我们的卷积层不会只有一个kernel,因为一个kernel只能提取图片的一类特征,我们使用CNN的目的就在于应用多个kernel学习到多个特征,下面给出使用两个kernel的例子。

每一个kernel都会来一遍上图中获得feature map的过程。最终我们会得到2个feature map,与卷积核的数量一致。

2.RGB三通道图片卷积过程

 

这里可以看到,图片从一个矩阵变为了3个,这时候kernel也变成了3个矩阵,请注意 ,这三个叫做一个kernel,但是这三个kernel共享一个bias。在卷积运算的时候,这个kernel的三个通道分别与对应的图片通道做卷积,过程与单通道处理是一样的,但是这里由于有三个通道,所以会得到3个数字,而不是之前的一个数字,但是这里的三个数字会直接相加,最终还是一个数字,所以这里就是3通道卷积的trick所在,这里是容易疑惑的一个点,搞明白就好。

多个kernel可以类比之前的单通道,总之,结论就是,不管是单通道还是三通道的首个卷积层,都会输出与kernel数量相等的feature map。且不管是不是单通道,只要图片宽高是一样的,单通道和多通道的首个卷积层过后,得到的feature map在维度上是一致的。

 

代码验证

选择了pytorch中的torch.nn.Conv2d来做验证。

1.简单介绍网络的输入参数含义

import torch.nn as nn

# 定义一个二维卷积层
conv_layer = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1)

# 假设有一个4维的输入张量 x,形状为 (batch_size, in_channels, height, width)
x = torch.randn(1, 3, 32, 32)

# 在输入张量上应用卷积层
output = conv_layer(x)

# 输出张量的形状为 (batch_size, out_channels, output_height, output_width)

其中,in_channels表示输入张量的通道数,out_channels表示输出张量的通道数(即卷积核的数量),kernel_size表示卷积核的大小,stride表示卷积的步长,padding表示边缘填充的大小。在输入张量上应用卷积层后,输出张量的形状为 (batch_size, out_channels, output_height, output_width)。 

2.为单通道图片设计第一个卷积层,并查看该层的输出

# 设计一个单通道的卷积网络结构
import torch
from torch.autograd import Variable
# 单通道图片模拟输入
input=torch.ones(1,1,64,64)
input=Variable(input)
x=torch.nn.Conv2d(in_channels=1,out_channels=5,kernel_size=3,groups=1)
out=x(input)
print(out.shape)
print(list(x.parameters()))

打印结果

torch.Size([1, 5, 62, 62])
[Parameter containing:
tensor([[[[-0.1166,  0.2381, -0.0446],
          [ 0.0855,  0.1347, -0.2986],
          [-0.3251,  0.2721,  0.2473]]],


        [[[-0.1630,  0.2612,  0.1867],
          [-0.1606, -0.2781, -0.1183],
          [ 0.2221, -0.1114, -0.2046]]],


        [[[-0.2414, -0.2379,  0.0680],
          [ 0.1928, -0.0585,  0.1804],
          [ 0.1891, -0.1915,  0.0281]]],


        [[[-0.3227,  0.0911, -0.0136],
          [-0.2742, -0.2246, -0.1227],
          [ 0.1420,  0.3284, -0.0288]]],


        [[[ 0.2173, -0.1299, -0.2056],
          [-0.2324,  0.2499, -0.1909],
          [ 0.2416, -0.1457, -0.1176]]]], requires_grad=True), 
Parameter containing:
tensor([-0.0273,  0.2994,  0.3226, -0.2969,  0.2965], requires_grad=True)]

这里我们可以看到,第一层的输出结果是有5个feature maps,也就是卷积核的数量。随后我们打印出了第一层的卷积参数,可以看到就是5个卷积核的参数,以及对应的五个bias参数。

3.为RGB三通道图片设计第一个卷积层,并给出参数

# 设计一个3通道的卷积网络结构
import torch
from torch.autograd import Variable
# 模拟RGB三通道图片输入
input=torch.ones(1,3,64,64)
input=Variable(input)
x=torch.nn.Conv2d(in_channels=3,out_channels=5,kernel_size=3,groups=1)
out=x(input)
print(out.shape)
print(list(x.parameters()))

打印输出

torch.Size([1, 5, 62, 62])
[Parameter containing:
tensor([[[[-0.0902, -0.0764,  0.1497],
          [-0.0632, -0.1014, -0.0682],
          [ 0.1309,  0.1173,  0.0268]],

         [[-0.0410, -0.1763,  0.0867],
          [ 0.0771, -0.0969,  0.0700],
          [ 0.1446, -0.0159, -0.1869]],

         [[-0.1278,  0.0244,  0.1861],
          [-0.0180,  0.0529, -0.1475],
          [-0.0562, -0.0487,  0.0659]]],


        [[[ 0.0649, -0.1758, -0.0420],
          [ 0.1287,  0.1500,  0.1027],
          [ 0.0033,  0.1565,  0.1461]],

         [[ 0.0645,  0.0515, -0.0729],
          [ 0.0900,  0.0941,  0.1813],
          [ 0.1846, -0.1075,  0.1861]],

         [[ 0.1489,  0.0536,  0.1510],
          [-0.1070,  0.0748,  0.1619],
          [ 0.1812, -0.0722,  0.1492]]],


        [[[-0.0450, -0.0846,  0.0761],
          [ 0.1049,  0.0492,  0.1556],
          [ 0.1301,  0.0494,  0.0136]],

         [[-0.1303, -0.0979, -0.0331],
          [ 0.0435, -0.0201, -0.1207],
          [ 0.1275, -0.0049, -0.0092]],

         [[ 0.1782,  0.1347,  0.0707],
          [-0.0850,  0.0585,  0.1361],
          [ 0.0917, -0.0156,  0.0407]]],


        [[[ 0.0491,  0.0752,  0.0096],
          [ 0.1599, -0.1281, -0.0937],
          [ 0.1029, -0.1467,  0.1238]],

         [[-0.0651, -0.1169,  0.1772],
          [ 0.0180,  0.1491,  0.0145],
          [ 0.0586,  0.1246,  0.1060]],

         [[-0.1220,  0.0525,  0.1046],
          [ 0.0069,  0.0356,  0.0152],
          [-0.0822, -0.1157, -0.0420]]],


        [[[-0.0679,  0.1752,  0.1020],
          [ 0.0018,  0.0721,  0.1708],
          [-0.0201,  0.1753,  0.0620]],

         [[-0.0023, -0.1203, -0.1113],
          [ 0.1765, -0.1914,  0.0836],
          [-0.0526, -0.1803, -0.0656]],

         [[-0.1735,  0.0795, -0.1867],
          [ 0.1757, -0.0261,  0.0198],
          [-0.1756, -0.0549, -0.0018]]]], requires_grad=True), 
Parameter containing:
tensor([-0.1727,  0.1823,  0.1416, -0.0721, -0.1219], requires_grad=True)]

可以看到,对三通道的图片处理后,输出的也是一样的形状,但是具体再看卷积核,会发现,每个卷积核都有3个通道,而且每个通道的参数是不一样的,但是他们共享一个bias。

  • 7
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
卷积神经网络(Convolutional Neural Network,CNN)是一种机器学习算法,其主要应用于图像识别、计算机视觉和模式识别等领域。CNN模型的设计灵感来源于科学家们对于生物视觉系统的研究。该算法的核心概念是通过卷积层、池化层和全连接层的组合,对输入的图像进行特征提取和分类。 在CNN卷积层是该模型的主要组成部分之一。通过定义一组卷积核(或过滤器),卷积层可以对输入的图像进行滤波操作,将原始图像的特定特征(例如边缘和纹理)提取出来,并生成一系列特征图。这些特征图可以被认为是对原始图像进行不同尺度和方向的特征提取。 在经过卷积层之后,通常会接着使用池化层来进行下采样操作。池化层的主要目的是减小特征图的尺寸,同时保留重要的特征信息。最常见的池化操作是最大池化,它通过从特定区域选择最大值来减小特征图的尺寸。 最后,经过卷积层和池化层的多次迭代后,最后会以全连接层作为输出层,进行分类任务。全连接层的每个节点都与前一层的所有节点相连接,主要用于将最后一层的特征进行整合,并根据特征进行分类或回归。 相比于传统机器学习算法,CNN在处理图像任务方面具有更好的性能。这是因为卷积层可以通过共享权重和局部连接的方式进行参数的共享,大大减少了需要训练的参数数量,并且能够有效处理图像的平移不变性。此外,卷积神经网络还可以通过堆叠多个卷积层和全连接层来构建深层网络模型,从而进一步提高模型的性能。 总而言之,卷积神经网络是一种强大的机器学习算法,特别适用于图像识别和计算机视觉任务。通过卷积层、池化层和全连接层的组合,CNN可以有效地提取图像的特征,并进行分类或回归等任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gaosiy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值