深度学习的宏观框架——训练(training)和推理(inference)及其应用场景

一个完整的深度框架中应该包含两个主要部分,即训练(training)和推理(inference)

训练(Training)

打个比方,你现在想要训练一个能区分苹果还是橘子的模型,你需要搜索一些苹果和橘子的图片,这些图片放在一起称为训练数据集(training dataset),训练数据集是有标签的,苹果图片的标签就是苹果,橘子亦然。一个初始神经网络通过不断的优化自身参数,来让自己变得准确,可能开始10张苹果的照片,只有5张被网络认为是苹果,另外5张认错了,这个时候通过优化参数,让另外5张错的也变成对的。这整个过程就称之为训练(Traning)。

推理(Inference)

你训练好了一个模型,在训练数据集中表现良好,但是我们的期望是它可以对以前没看过的图片进行识别。你重新拍一张图片扔进网络让网络做判断,这种图片就叫做现场数据(live data),如果现场数据的区分准确率非常高,那么证明你的网络训练的是非常好的。我们把训练好的模型拿出来遛一遛的过程,称为推理(Inference)。

部署(deployment)

想要把一个训练好的神经网络模型应用起来,需要把它放在某个硬件平台上并保证其能运行,这个过程称之为部署(deployment)。

应用场景

从研发角度来说,对于一个专门研究算法的人,他的目的是通过训练得到一个效果非常好的模型,所以他的应用场景会在一个高性能的运算平台上,通俗的来说,就是不计成本的使用算力比较牛B的计算机,比如NVIDIA的服务器集群。

从产品应用角度来说,不管你的AI算法是部署在智能手机还是其他的一些特定的应用场景,比如安防用的摄像头,野外工作的机器人,医院的智能诊断读片机,给每个应用都分配一个告诉计算平台显然是不合理也是不可能的,因此目前很多的终端在使用AI的时候都是数据上传到云上,通过高性能服务器获取结果再传给终端,比如支付宝的AI扫福,断网可能就玩不了了,这个还好,有一些场景是很容易或者需要断网的,比如恶劣天气,保密机构,那么在终端上独立完成AI运算就显得很重要,这个又回到我们jetson系列的研究上了,感兴趣的读者可以看一下我的NVIDIA Xaiver系列的介绍。

玩转NVIDIA Jetson AGX Xavier(1)--- jetson是什么

  • 118
    点赞
  • 208
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 12
    评论
深度学习推理优化器是用来优化神经网络模型推理(即预测)阶段的速度和效率的工具。在训练阶段,我们通常使用反向传播算法和梯度下降等优化器来更新权重和偏置参数,以最小化损失函数。但在推理阶段,我们不需要更新参数,而是需要快速地计算出模型的输出结果。因此,推理优化器的目的是通过减少计算量和内存占用来加速推理过程。 常见的深度学习推理优化器包括: 1. 剪枝(Pruning):去除模型不必要的神经元或连接,减少计算量和内存占用。 2. 量化(Quantization):将模型的浮点数参数转换为更小的整数或定点数,减少内存占用和计算量。 3. 分组卷积(Grouped Convolution):将卷积操作分成多个小组进行计算,减少计算量和内存占用。 4. 转换(Translation):将模型转换为更快速的计算框架或硬件平台,例如将模型转换为TensorRT或使用专门设计的ASIC芯片。 5. 缓存(Caching):缓存模型间结果,以便在后续计算重复使用,减少计算量。 6. 并行计算(Parallel Computing):将计算分配到多个处理器或计算机上并行计算,加快推理速度。 7. 知识蒸馏(Knowledge Distillation):使用一个小型的模型来学习一个大型模型的知识,从而减少计算量和内存占用。 综上所述,深度学习推理优化器是提高模型推理速度和效率的重要工具,可以通过剪枝、量化、分组卷积、转换、缓存、并行计算和知识蒸馏等方法来实现。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gaosiy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值