LangChain——Embedding 智谱AI

Embedding 嵌入

Embedding嵌入创建一段文本的矢量表示。这很有用,因为这意味着我们可以考虑向量空间中的文本,并执行语义搜索之类的操作,在其中查找向量空间中最相似的文本片段。

LangChain 中的基类 Embeddings 提供了两种方法:一种用于嵌入文档,另一种用于嵌入查询。前者 embed_documents 采用多个文本作为输入,而后者 embed_query 采用单个文本。

embed_documents

embed-documents将文本嵌入为embeddings(向量)。

embeddings = embeddings_model.embed_documents(
    [
        "Hi there!",
        "Oh, hello!",
        "What's your name?",
        "My friends call me World",
        "Hello World!"
    ]
)
len(embeddings), len(embeddings[0])

embed_query

embed_query其实和embed-documents差不多,区别在于embed-query嵌入单段文本,而embed-documents嵌入的是一个文本列表。

embedded_query = embeddings_model.embed_query("What was the name mentioned in the conversation?")
embedded_query[:5]

官方教程使用的openai的api作为示例,需要付费才能使用,因此我们选择使用国产的智谱ai开源的嵌入模型来进行实验。

首先我们需要获取到智谱AI的api-key,前往 https://bigmodel.cn/)https://bigmodel.cn/注册智普 AI 并生成 API 密钥。完成此操作后,设置 ZHIPUAI_API_KEY 环境变量即可。

然后我们只需要导入ZhipuAIEmbeddings,并且声名所使用的的模型即可。

from langchain_community.embeddings import ZhipuAIEmbeddings

embeddings = ZhipuAIEmbeddings(
    model="embedding-3",
)

embed_query嵌入单个文本

text = "LangChain is the framework for building context-aware reasoning applications"
single_vector = embeddings_model.embed_query(text)
len(single_vector)

2048

eimbed_documents嵌入多个文本

text2 = (
    "LangGraph is a library for building stateful, multi-actor applications with LLMs"
)
two_vectors = embeddings_model.embed_documents([text, text2])
print(len(two_vectors), len(two_vectors[0]))

2 2028
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

volcanical

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值