QuPath病理流程学习 ③ IHC、H&E (WSI的处理)实战

示例数据

示例样本获取,里面有HE和IHC两种切片数据

Hamamatsu NDPI (cmu.edu)

Cell detection — QuPath 0.5.0 documentation

在QuPath中,病理选择Brightfield H&E和Brightfield DAB代表了不同的染色方式。H&E代表了Hematoxylin and Eosin(苏木精和伊红)染色技术,而DAB代表了3,3'-Diaminobenzidine(二氨基苯基丁二酮)染色技术。 H&E染色是最常用的组织染色技术之一,它使用苏木精染色细胞核(呈蓝色)和伊红染色细胞质(呈粉红色)。这种染色方法可以帮助生物学家和病理学家观察和鉴定组织中的细胞类型、结构和形态学特征。 DAB染色是一种常用的免疫组织化学染色方法,它使用DAB作为显色剂。在免疫组织化学实验中,抗体与组织中的特定抗原结合后,通过添加DAB显色产生棕色或棕黑色的反应产物。这种染色方法可用于检测和定位组织中的特定分子或抗原。 因此,H&E病理切片和DAB病理切片在染色上有明显的差异。H&E病理切片呈现出细胞核为蓝色,细胞质为粉红色的特征,而DAB病理切片呈现出棕色或棕黑色的显色结果。这些差异使得研究人员能够利用不同的染色方式来观察和分析组织中的不同结构和分子,从而更好地理解生物学和疾病机制。

多重分析使用的文件:

Index of /images/Vectra-QPTIFF/perkinelmer/PKI_fields (openmicroscopy.org)


流程导图

PDF文件在附件

脚本使用

qupath 还可以使用脚本来进行运行

例子:ROI区域使用使用 ImageJ

import qupath.lib.regions.*
import qupath.imagej.tools.IJTools
import qupath.imagej.gui.IJExtension
import ij.*

// Request an ImageJ instance - this will open the GUI if necessary
// This isn't essential, but makes it it possible to interact with any image that is shown
IJExtension.getImageJInstance()

// Read image & show in ImageJ
def server = getCurrentServer()
def roi = getSelectedROI()
double downsample = 4.0
def request = RegionRequest.createInstance(server.getPath(), downsample, roi)
def pathImage = IJTools.convertToImagePlus(server, request)
def imp = pathImage.getImage()
imp.show()

// Convert QuPath ROI to ImageJ Roi & add to open image
def roiIJ = IJTools.convertToIJRoi(roi, pathImage)
imp.setRoi(roiIJ)

ROI区域使用OpenCV

import qupath.lib.regions.*
import qupath.imagej.tools.IJTools
import qupath.opencv.tools.OpenCVTools
import org.bytedeco.opencv.opencv_core.Size
import static org.bytedeco.opencv.global.opencv_core.*
import static org.bytedeco.opencv.global.opencv_imgproc.*
import ij.*

// Read BufferedImage region
def server = getCurrentServer()
def roi = getSelectedROI()
double downsample = 4.0
def request = RegionRequest.createInstance(server.getPath(), downsample, roi)
def img = server.readRegion(request)

// Convert to an OpenCV Mat, then apply a difference of Gaussians filter
def mat = OpenCVTools.imageToMat(img)
mat2 = mat.clone()
GaussianBlur(mat, mat2, new Size(15, 15), 2.0)
GaussianBlur(mat, mat, new Size(15, 15), 1.0)
subtract(mat, mat2, mat)
mat2.close()

// Convert Mat to an ImagePlus, setting pixel calibration info & then show it
def imp = OpenCVTools.matToImagePlus(mat, "My image")
IJTools.calibrateImagePlus(imp, request, server)
imp.show()

参考:

1 - Introduction to QuPath for IHC analysis_哔哩哔哩_bilibili

Quantitative Pathology & BioImage Analysis_ QuPath - [NEUBIASAcademy@Home] Webin_哔哩哔哩_bilibili

Projects — QuPath 0.5.0 documentation

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值