肿瘤生信分析
文章平均质量分 78
hx2024
大丈夫当朝游碧海而暮苍梧 http://www.bio-info-trainee.com/9326.html
GWASLab – GWAS实验室:https://gwaslab.org/
https://www.plob.org/category/single-cell/
展开
-
ggplot阶截断坐标轴-gggap
【代码】ggplot阶截断坐标轴-gggap。原创 2024-08-20 20:47:48 · 648 阅读 · 0 评论 -
Seurat-SCTransform与harmony整合学习续(亚群分析)
也就是说,两个样品的髓系淋巴细胞有样品特异性,但是我们的harmony整合可以让两个样品cd16单核在UMAP的二维可视化图靠近,以及两个样品的一小撮cd14单核在UMAP的二维可视化图靠近,但是很明显,STIM组里面的cd14单核还是有3个顽强的独立的亚群,是它比较特有的。,可能是因为它是针对完整的单细胞表达量矩阵设计的?或者说应该是在具体的每个样品内部跑SCTransform后然后再多个样品合并?左侧仅仅SCTransform标准化;右侧SCTransform+harmony去批次。原创 2024-08-01 20:00:27 · 652 阅读 · 0 评论 -
单细胞Seurat-SCTransform标准化(并不能去批次)
我们已经知道SCTranform的实际Normalize过程是调用的sctransform::vst函数,第一步拟合的代码在下面,可以发现实际代码是get_model_pars函数,get_model_pars中可以看到这里有多种拟合method可以选择,默认是possion,原因也是上述所说的,一个是运行速度的考虑,另外是由于第二步还要进行正则化,possion和负二项的拟合结果的最终差异不太大。然后再按照Counts的传统,对它进行log处理即可(变为常规的线性可加的数据)。原创 2024-07-31 01:22:04 · 1415 阅读 · 0 评论 -
单细胞数据整合-去除批次效应harmony和CCA (学习)
在单细胞RNA测序(scRNA-seq)数据分析中,去除批次效应是至关重要的步骤,因为技术噪声和批次效应可能掩盖真正的生物学差异。批次效应来源于实验过程中的多种因素,如不同的实验批次、实验人员、仪器或实验条件的变化等。这些效应可能导致数据不一致性、增加噪声、降低实验的灵敏度和准确性,以及降低可重复性。scRNA-seq实验成本的降低鼓励建立大型项目,如人类细胞图谱,这些项目对数千至数百万个细胞的转录组进行分析。对于如此大规模的研究,物流限制不可避免地要求数据单独生成,即在不同的时间和不同的操作员生成。原创 2024-07-31 00:31:30 · 2804 阅读 · 0 评论 -
TIGER:肿瘤免疫治疗(转录组+单细胞免疫)
TIGER提供单细胞免疫、免疫治疗反应、反应特征、免疫筛选等四大功能分析模块,让用户能够访问TIGER中的资源。目前的免疫治疗研究主要集中在CD8 T细胞上,以探索免疫治疗诱导的抗肿瘤免疫机制,并发现有效的免疫治疗反应生物标志物。该模块在“概述”、“细胞类型标记”、“差异表达分析”、“共表达分析”、“轨迹分析”和“细胞-细胞通讯”选项卡六个选项卡中为用户提供了丰富的scRNA-seq数据分析功能。在此,我们整合了TIGER中的批量和单细胞转录组基因表达数据,全面探索了免疫治疗下CD4 T细胞的抗肿瘤免疫。原创 2024-07-20 01:28:21 · 1037 阅读 · 0 评论 -
TCGA+GEO数据单基因在线生存分析
相比于gepia2 数据库的分析结果,可以以最佳cutoff值进行分割分析。可以选择泛癌或者单个肿瘤。(也可以使用GEPAI2。,不能自动分析最佳cutoff值)原创 2024-07-19 12:20:41 · 538 阅读 · 0 评论 -
CPTAC蛋白数据+TCGA转录数据在线分析(全)
两个基因相关性CPTAC蛋白组数据_cptac基因相关性-CSDN博客。原创 2024-07-17 02:13:24 · 1251 阅读 · 0 评论 -
CPTAC蛋白数据库在线蛋白分析(癌与癌旁)
可指定肿瘤类型和数据集,针对单个基因,分析其在肿瘤和癌旁组织的丰度差异,磷酸化位点差异等。可用于验证目标基因是否在指定类型肿瘤中存在高表达,磷酸化等。选择自己感兴趣的基因和肿瘤进行在线分析。下面会有每个样本的数据。原创 2024-07-16 20:27:24 · 1649 阅读 · 2 评论 -
CPTAC蛋白数据库的补充(自备)
得到的比率可以通过平均蛋白质肽的比率来总结。为了将CPTAC研究中的生物样品数量扩大到同量异位标签试剂的容量之外,所有分析样品中都包括一个通用的参考样品,其标签的强度在整个过程中用作比率分母。虽然这两种总结相对蛋白质丰度的方法通常产生非常相似的值,但未共享对数比值可能表示较少值的总和,而对数比值可能表示两种不同同源蛋白质的相对定量值的卷积。少数较早的CPTAC研究使用无标记定量工作流程,无需标记试剂,并根据每个母离子洗脱曲线下的积分面积(母离子区域)和从蛋白质中鉴定出的肽数(光谱计数)对肽进行定量。原创 2024-07-14 20:53:23 · 937 阅读 · 3 评论 -
两个基因相关性CPTAC蛋白组数据
其中基因组数据包含总计1300+不同类型肿瘤病人的WGS、WES和RNA-seq数据,可通过GDC Data Portal访问,也就是咱们下载TCGA数据库的界面。分析RPPA数据时: 对于单个RPPA批次中的单个疾病,3级(l 3)或4级(l 4)对于单个疾病分析应该是好的。对于在多个批次中描述的单一疾病,由于不同批次之间的批次效应,L4对于单一疾病分析肯定优于L3。可以选择3级或4级数据。需要注意的是数据中包含log Ratio 和Unshared log ratio,选择Unshared数据。原创 2024-06-24 02:05:29 · 1308 阅读 · 3 评论 -
两个基因相关性细胞系(CCLE)(升级)
Pearson 积差相关系数衡量了两个定量变量之间的线性相关程度。Spearman等级相关系数则衡量分级定序变量之间的相关程度。Kendall’s Tau 相关系数也是一种非参数的等级相关度量。肺癌GAPDH和IGF2BP1相关性为例。原创 2024-06-23 21:31:55 · 588 阅读 · 0 评论 -
③单细胞学习-pbmc的Seurat 流程
Cluster IDMarkersCell Type0IL7R, CCR71CD14, LYZCD14+ Mono23MS4A1B4CD8ACD8+ T56GNLY, NKG7NK7DC8PPBPPlatelet#为聚类分配单元类型标识#进行图片保存saveRDS(pbmc, file = "pbmc3k_final.rds")#用于cellchat准备参考:单细胞测序分析: Seurat 使用教程 - 简书 (jianshu.com)原创 2024-05-31 20:59:21 · 1382 阅读 · 0 评论 -
②单细胞学习-组间及样本细胞比例分析
比较各个样本间的各类细胞比例或者亚组之间的细胞比例差异。原创 2024-05-28 21:17:50 · 1852 阅读 · 1 评论 -
大工作量LUAD代谢重编程模型多组学(J Transl Med)
我们引入了一种创新的集成学习管道,即三阶段 MMR (3 S-MMR),并通过遗传算法进行增强。该框架分别在特征工程和模型开发中使用双训练集,从而降低了严重过拟合的风险。原创 2024-05-21 23:51:29 · 1244 阅读 · 0 评论 -
线性相关性+添加柱状图边际
【代码】线性相关性+添加柱状图边际。原创 2024-04-29 10:54:34 · 195 阅读 · 1 评论 -
基因查询常用汇总网(多数据库)
进行一些常用的基因功能蛋白及表达的网站查询汇总,方便个人使用。原创 2024-04-11 21:17:02 · 595 阅读 · 1 评论 -
R语言 多组堆砌图
关键点在于数据转换步骤和数据比例计算步骤,然后个性化调整图。①data原创 2024-04-08 21:24:15 · 449 阅读 · 2 评论 -
ComplexHeatmap绘图:只用注释不带热图版
不过这个参数好像不太方便设置颜色。原创 2024-04-03 18:46:58 · 380 阅读 · 1 评论 -
学习库链接(自备)
很多时候有点代码流程忘记了,可以从库中进行查询。原创 2024-03-17 09:59:22 · 414 阅读 · 3 评论 -
箱线图汇总ggplot2(自备)
数据使用鸢尾花数据模拟。原创 2024-03-25 19:33:00 · 1492 阅读 · 3 评论 -
线性拟合相关性
【代码】线性拟合相关性。原创 2024-03-24 23:40:07 · 305 阅读 · 4 评论 -
关于数据cutoff值确定多种方法(自备)
surv_cutpoint()使用Kaplan-Meier估计和log-rank检验来评估生存曲线的差异,而ROC曲线使用真阳性率和假阳性率的比值来评估分类模型的性能。surv_cutpoint()通过评估生存曲线的差异来选择最佳截断值,而ROC曲线通过计算真阳性率和假阳性率来评估分类模型的性能。综上所述,surv_cutpoint()确定的最佳截断值与ROC确定的最佳截断值是一致的,因为它们都追求在预测中最大化敏感性和特异性,并基于统计学原理来评估模型的性能。根据某个数据的检验效能最佳截断值进行分组。原创 2024-03-24 11:46:39 · 2008 阅读 · 0 评论 -
HPAanalyze下载病理IHC然后qupath半定量分析(补全)
关于HPAanalyze病理数据IHC切片数据的下载。原创 2024-03-16 19:45:14 · 1559 阅读 · 2 评论 -
绘制点图添加曲线和特征筛选
文献中关于特征的筛选(根据P值,然后计算→排序→绘图)原创 2024-03-14 16:24:40 · 925 阅读 · 3 评论 -
肿瘤相关巨噬细胞TAM综述及研究学习②
TAM 支持癌细胞的生长和转移,并对 TME 的适应性免疫细胞产生免疫抑制作用。(上一篇学习文献)原创 2024-02-29 15:58:41 · 1275 阅读 · 0 评论 -
CancerSubtypes包(多种肿瘤分型方法)
该包是2017年发表的已经很久了,但其涵盖的几种分型方法比较经典。开发背景:cancer subtype R包,该包使用相同的输入和输出格式实现了众所周知的癌症亚型发现方法。内含方法:Montiet al., 2003Brunetet al., 2004Shenet al., 2009Wanget al., 2014Xuet al., 2016提供的验证和可视化方法生存分析,表达差异,轮廓系数等Liuet al., 2008。原创 2024-02-29 10:26:36 · 1195 阅读 · 1 评论 -
肿瘤微环境相关综述
对肿瘤微环境综述再学习:使用的在线翻译,详细信息见原文。原创 2024-02-06 15:12:30 · 465 阅读 · 0 评论 -
常用Hallmark及KEGG、GO基因查询
通过msigdb数据库可以查看各个Hallmark、KEGG、GO具体包含的基因细节。(需要先使用edu邮箱进行注册)原创 2024-02-05 21:21:44 · 2374 阅读 · 6 评论 -
肿瘤微环境各种浸润细胞及maker(学习)
综上所述,肿瘤微环境中的基质细胞、髓样细胞和淋巴细胞分别具有不同的细胞类型和作用。T滤泡辅助性(Tfh)细胞和先天细胞的密度增加,而大多数T细胞密度随着肿瘤的进展而降低。B细胞是核心免疫网络中的关键参与者,与延长生存期有关,其数量在晚期增加,并显示出对复发和肿瘤进展的双重影响。此外,基质细胞还参与调节肿瘤细胞的增殖、迁移和侵袭能力,以及血管生成过程。髓样细胞通过产生多种细胞因子和信号分子,调控肿瘤细胞的增殖、分化和存活。肿瘤微环境肿瘤的细胞包括,免疫细胞、基质细胞和恶性细胞。原创 2024-02-05 21:06:29 · 1533 阅读 · 1 评论 -
R语言list与dataframe相互转换(常用)
在R语言使用中常常遇到list文件需要转变为dataframe格式文件处理。这是需要写循环来进行转换。原创 2024-01-13 18:06:54 · 3705 阅读 · 0 评论 -
QuPath学习④ 脚本使用
介绍qupath部分函数以下是 QuPath 中一般概念的概述:您的图像可能(并且可能应该)组织在一个Project项目中的每个图像都由当您打开一个 时,您会在查看器中显示一个ImageDataImageData(例如明场、荧光)ImageType任何必需的(如果是明场)一个 ,用于访问像素和元数据A ,包含树状结构每个都包含一个和当您在 QuPath 中分析图像时,您需要从 中获取 ,访问像素,并尝试表示图像包含在 .然后,查询对象层次结构以提取某种汇总度量。原创 2024-01-02 21:09:57 · 2690 阅读 · 0 评论 -
病理HE学习贴(自备)
以胃癌的学习为例。原创 2023-12-31 13:38:39 · 987 阅读 · 3 评论 -
TSR勾画学习
(4)由经验丰富的研究者(LW Wang)使用QuPath的标注工具对具有代表性的训练区域进行相应的标注,包括肿瘤组织、基质组织和“其他”(空白、坏死、粘蛋白、炎症等);(5)对随机森林分类器进行算法训练,实现肿瘤组织及周围基质组织的最优分类;使用TMA数据浏览器的数据输出提供了肿瘤组织和基质组织的面积(μm2) 分别在每个内核中。如果无法选择没有平滑肌组织的合适区域(例如,在 II 期肿瘤中),则应忽略该组织室进行评分。同一患者的多个载玻片,对基质百分比最高的切片进行评分,并作为TSR的最终估计。原创 2023-12-30 10:31:44 · 1060 阅读 · 0 评论 -
QuPath病理流程学习 ③ IHC、H&E (WSI的处理)实战
H&E代表了Hematoxylin and Eosin(苏木精和伊红)染色技术,而DAB代表了3,3'-Diaminobenzidine(二氨基苯基丁二酮)染色技术。H&E染色是最常用的组织染色技术之一,它使用苏木精染色细胞核(呈蓝色)和伊红染色细胞质(呈粉红色)。H&E病理切片呈现出细胞核为蓝色,细胞质为粉红色的特征,而DAB病理切片呈现出棕色或棕黑色的显色结果。这些差异使得研究人员能够利用不同的染色方式来观察和分析组织中的不同结构和分子,从而更好地理解生物学和疾病机制。原创 2023-12-26 16:23:05 · 3453 阅读 · 4 评论 -
TCGA超过1G的病理wsi数据下载-gdc-client
使用网页端下载TCGA超过1G的病理wsi数据,数据下载到1G后就不能完整下载。遂采用gdc-client下载。原创 2023-12-23 20:08:50 · 1733 阅读 · 7 评论 -
数字病理图像分析的开源软件qupath学习 ①
通过添加 3x% 强染色的肿瘤细胞核、2x% 中度染色的肿瘤细胞核和 1x% 弱染色的肿瘤细胞核来计算每个组织核心的 H 评分,给出的结果范围为 0(所有肿瘤核阴性)到 300(所有肿瘤核强阳性)。最重要的是,QuPath提供了一系列新颖的算法,不仅为病理学中常见的、具有挑战性的分析问题提供现成的、用户友好的解决方案,而且还提供了创建自定义工作流程的构建块,并将它们链接在一起,通过强大的脚本功能进行批处理。绿色表示被归类为基质的区域,深红色表示肿瘤上皮,而黄色表示其他分类的组织或空白。原创 2023-12-14 20:32:40 · 4040 阅读 · 1 评论 -
Pearson、Spearman 相关性分析使用
Pearson积差相关系数衡量了两个定量变量之间的线性相关程度。用来衡量两个数据集的线性相关程度,仅当一个变量的变化与另一个变量的比例变化相关时,关系才是线性的。Spearman等级相关系数则衡量分级定序变量之间的相关程度。斯皮尔曼相关系数不关心两个数据集是否线性相关,而是单调相关。它是基于每个变量的排名值,而不是原始数据,所以斯皮尔曼相关也叫等级相关或者秩相关(即rank)。简单一句话概括:Pearson 处理变量的数据原始值,而Spearman 处理数据排序值(需要先做变换:transform)原创 2023-12-12 14:14:53 · 1119 阅读 · 3 评论 -
确定TME浸润模式的TMEscore包(胃癌)
作者使用先前研究得出的肿瘤免疫相关基因(),对特征基因进行缩减。从多个免疫治疗队列中获取这些基因的重要性特征。Snyderet al.每个基因在每个治疗队列中预测免疫治疗反应的显著性差异P值,取−𝑙𝑜𝑔10P除每个队列的样本数量。然后把每个基因所有队列的“特征值”相加即为每个基因的特征值。。(基因的正负号应该是)左下蓝色负相关降维后的基因PCA得分与原来的基因集PCA得分相关性高。原创 2023-12-06 23:54:56 · 368 阅读 · 0 评论 -
分类变量组间差异分析
两个变量的关联有可能受到第三个变量的影响,因此我们有必要检验两个分类变量在调整(控制)第三个变量的情况下是否独立。函数chisq:test()的参数correct用于设置是否进行连续性校正,默认为TRUE,故在输出中有说明“Pearson's Chi-squared test with Yates'continuity correction”。对于一般的列联表,可以使用函数chisq.test()进行 卡方检验。函数fisher.test()不仅可以运用于四格表,还可以运用于行列数大于2的列联表。原创 2023-12-04 21:15:00 · 495 阅读 · 0 评论 -
连续性变量的组间差异分析
(2)正态性检验只是检验样本数据来自正态分布总体的可能性有多大,或者说只是检验样本数据的总体是否近似正态分布,因此样本的总体并不是一定服从标准正态分布,但已有大量实验表明,即使总体仅为近似的正态分布,也能很好地进行 t -test、方差分析等参数检验。(1)由于每个正态性检验方法的检验角度不同,因此同一批数据用不同的检验方法可能得到的结果会不尽相同,所以在实际操作中可以根据样本量大小选择多种检验方法进行正态性检验,同时通过QQ图等图示法辅助判断;在比较两组的差异时,由于组间不是独立的,需要用配对的t检验。原创 2023-12-04 20:37:03 · 1178 阅读 · 3 评论