神经网络调参实战(三) —— (2) —— 图像增强

我们使用原来的vggnet代码来做图像增强

import tensorflow as tf
import os
import pickle
import numpy as np
 
CIFAR_DIR = "dataset/cifar-10-batches-py"
print(os.listdir(CIFAR_DIR))
 
 
def load_data(filename):
    """read data from data file."""
    with open(filename, 'rb') as f:
        data = pickle.load(f, encoding='bytes')
        return data[b'data'], data[b'labels']
 
# tensorflow.Dataset.
class CifarData:
    def __init__(self, filenames, need_shuffle):
        all_data = []
        all_labels = []
        for filename in filenames:
            data, labels = load_data(filename)
            all_data.append(data)
            all_labels.append(labels)
        self._data = np.vstack(all_data)
        self._data = self._data / 127.5 - 1
        self._labels = np.hstack(all_labels)
        print(self._data.shape)
        print(self._labels.shape)
        
        self._num_examples = self._data.shape[0]
        self._need_shuffle = need_shuffle
        self._indicator = 0
        if self._need_shuffle:
            self._shuffle_data()
            
    def _shuffle_data(self):
        # [0,1,2,3,4,5] -> [5,3,2,4,0,1]
        p = np.random.permutation(self._num_examples)
        self._data = self._data[p]
        self._labels = self._labels[p]
    
    def next_batch(self, batch_size):
        """return batch_size examples as a batch."""
        end_indicator = self._indicator + batch_size
        if end_indicator > self._num_examples:
            if self._need_shuffle:
                self._shuffle_data()
                self._indicator = 0
                end_indicator = batch_size
            else:
                raise Exception("have no more examples")
        if end_indicator > self._num_examples:
            raise Exception("batch size is larger than all examples")
        batch_data = self._data[self._indicator: end_indicator]
        batch_labels = self._labels[self._indicator: end_indicator]
        self._indicator = end_indicator
        return batch_data, batch_labels
 
train_filenames = [os.path.join(CIFAR_DIR, 'data_batch_%d' % i) for i in range(1, 6)]
test_filenames = [os.path.join(CIFAR_DIR, 'test_batch')]
 
train_data = CifarData(train_filenames, True)
test_data = CifarData(test_filenames, False)
 
 
 
x = tf.placeholder(tf.float32, [None, 3072])
y = tf.placeholder(tf.int64, [None])
# [None], eg: [0,5,6,3]
x_image = tf.reshape(x, [-1, 3, 32, 32])
# 32*32
x_image = tf.transpose(x_image, perm=[0, 2, 3, 1])
 
# conv1: 神经元图, feature_map, 输出图像
conv1_1 = tf.layers.conv2d(x_image,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv1_2')
 
# 16 * 16
pooling1 = tf.layers.max_pooling2d(conv1_2,
                                   (2, 2), # kernel size
                                   (2, 2), # stride
                                   name = 'pool1')
 
 
conv2_1 = tf.layers.conv2d(pooling1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv2_2')
# 8 * 8
pooling2 = tf.layers.max_pooling2d(conv2_2,
                                   (2, 2), # kernel size
                                   (2, 2), # stride
                                   name = 'pool2')
 
conv3_1 = tf.layers.conv2d(pooling2,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv3_2')
# 4 * 4 * 32
pooling3 = tf.layers.max_pooling2d(conv3_2,
                                   (2, 2), # kernel size
                                   (2, 2), # stride
                                   name = 'pool3')
# [None, 4 * 4 * 32]
flatten = tf.layers.flatten(pooling3)
y_ = tf.layers.dense(flatten, 10)
 
loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_)
# y_ -> sofmax
# y -> one_hot
# loss = ylogy_
 
# indices
predict = tf.argmax(y_, 1)
# [1,0,1,1,1,0,0,0]
correct_prediction = tf.equal(predict, y)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
 
with tf.name_scope('train_op'):
    train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)
 
 
 
 
 
init = tf.global_variables_initializer()
batch_size = 20
train_steps = 10000
test_steps = 100
 
# train 10k: 73.4%
with tf.Session() as sess:
    sess.run(init)
    for i in range(train_steps):
        batch_data, batch_labels = train_data.next_batch(batch_size)
        loss_val, acc_val, _ = sess.run(
            [loss, accuracy, train_op],
            feed_dict={
                x: batch_data,
                y: batch_labels})
        if (i+1) % 100 == 0:
            print('[Train] Step: %d, loss: %4.5f, acc: %4.5f' 
                  % (i+1, loss_val, acc_val))
        if (i+1) % 1000 == 0:
            test_data = CifarData(test_filenames, False)
            all_test_acc_val = []
            for j in range(test_steps):
                test_batch_data, test_batch_labels \
                    = test_data.next_batch(batch_size)
                test_acc_val = sess.run(
                    [accuracy],
                    feed_dict = {
                        x: test_batch_data, 
                        y: test_batch_labels
                    })
                all_test_acc_val.append(test_acc_val)
            test_acc = np.mean(all_test_acc_val)
            print('[Test ] Step: %d, acc: %4.5f' % (i+1, test_acc))

 

但是我们在vggnet中的输入是一个归一化后的输入,图像的值只在(-1,1)之间,这样的值我们的图像增强函数API是识别不出来它是一张图像的

要把这一步去掉,在tensorflow计算图中去做归一化

此时x_image中的值就是0-255之间的像素值

然后我们再将我们的图像API应用到x_image上去

由于这三个函数接收的都是三维数据,所以我们要先把x_image先拆分,做图像增强,再合并

然后再做归一化

import tensorflow as tf
import os
import pickle
import numpy as np
 
CIFAR_DIR = "dataset/cifar-10-batches-py"
# print(os.listdir(CIFAR_DIR))
 
 
def load_data(filename):
    """read data from data file."""
    with open(filename, 'rb') as f:
        data = pickle.load(f, encoding='bytes')
        return data[b'data'], data[b'labels']
 
# tensorflow.Dataset.
class CifarData:
    def __init__(self, filenames, need_shuffle):
        all_data = []
        all_labels = []
        for filename in filenames:
            data, labels = load_data(filename)
            all_data.append(data)
            all_labels.append(labels)
        self._data = np.vstack(all_data)

        self._labels = np.hstack(all_labels)
        print(self._data.shape)
        print(self._labels.shape)
        
        self._num_examples = self._data.shape[0]
        self._need_shuffle = need_shuffle
        self._indicator = 0
        if self._need_shuffle:
            self._shuffle_data()
            
    def _shuffle_data(self):
        # [0,1,2,3,4,5] -> [5,3,2,4,0,1]
        p = np.random.permutation(self._num_examples)
        self._data = self._data[p]
        self._labels = self._labels[p]
    
    def next_batch(self, batch_size):
        """return batch_size examples as a batch."""
        end_indicator = self._indicator + batch_size
        if end_indicator > self._num_examples:
            if self._need_shuffle:
                self._shuffle_data()
                self._indicator = 0
                end_indicator = batch_size
            else:
                raise Exception("have no more examples")
        if end_indicator > self._num_examples:
            raise Exception("batch size is larger than all examples")
        batch_data = self._data[self._indicator: end_indicator]
        batch_labels = self._labels[self._indicator: end_indicator]
        self._indicator = end_indicator
        return batch_data, batch_labels
 
train_filenames = [os.path.join(CIFAR_DIR, 'data_batch_%d' % i) for i in range(1, 6)]
test_filenames = [os.path.join(CIFAR_DIR, 'test_batch')]
 
train_data = CifarData(train_filenames, True)
test_data = CifarData(test_filenames, False)
 
 
batch_size = 20
x = tf.placeholder(tf.float32, [batch_size, 3072])
y = tf.placeholder(tf.int64, [batch_size])
# [None], eg: [0,5,6,3]
x_image = tf.reshape(x, [-1, 3, 32, 32])
# 32*32
x_image = tf.transpose(x_image, perm=[0, 2, 3, 1])
#此时x_image   (20, 32, 32, 3)

x_image_arr = tf.split(x_image,num_or_size_splits=batch_size,axis=0)
result_x_image_arr = []

for x_single_image in x_image_arr:
    #x_single_image: [1,32,32,3] => [32,32,3]
    x_single_image = tf.reshape(x_single_image,[32,32,3])
    data_aug_1 = tf.image.random_flip_left_right(x_single_image)
    data_aug_2 = tf.image.random_brightness(data_aug_1, max_delta=63)
    data_aug_3 = tf.image.random_contrast(data_aug_2,lower=0.2,upper=1.8) #改变对比度的最小值是0.2,最大值是0.8
    x_single_image = tf.reshape(data_aug_3,[1,32,32,3])
    result_x_image_arr.append(x_single_image)

result_x_images = tf.concat(result_x_image_arr, axis=0)
normal_result_x_images = result_x_images / 127.5 - 1

# conv1: 神经元图, feature_map, 输出图像
conv1_1 = tf.layers.conv2d(normal_result_x_images,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv1_2')
 
# 16 * 16
pooling1 = tf.layers.max_pooling2d(conv1_2,
                                   (2, 2), # kernel size
                                   (2, 2), # stride
                                   name = 'pool1')
 
 
conv2_1 = tf.layers.conv2d(pooling1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv2_2')
# 8 * 8
pooling2 = tf.layers.max_pooling2d(conv2_2,
                                   (2, 2), # kernel size
                                   (2, 2), # stride
                                   name = 'pool2')
 
conv3_1 = tf.layers.conv2d(pooling2,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv3_2')
# 4 * 4 * 32
pooling3 = tf.layers.max_pooling2d(conv3_2,
                                   (2, 2), # kernel size
                                   (2, 2), # stride
                                   name = 'pool3')
# [None, 4 * 4 * 32]
flatten = tf.layers.flatten(pooling3)
y_ = tf.layers.dense(flatten, 10)
 
loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_)
# y_ -> sofmax
# y -> one_hot
# loss = ylogy_
 
# indices
predict = tf.argmax(y_, 1)
# [1,0,1,1,1,0,0,0]
correct_prediction = tf.equal(predict, y)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
 
with tf.name_scope('train_op'):
    train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)
 
 
 
 
 
init = tf.global_variables_initializer()
train_steps = 10000
test_steps = 100
 
# train 10k: 73.4%
with tf.Session() as sess:
    sess.run(init)
    for i in range(train_steps):
        batch_data, batch_labels = train_data.next_batch(batch_size)
        loss_val, acc_val, _ = sess.run(
            [loss, accuracy, train_op],
            feed_dict={
                x: batch_data,
                y: batch_labels})
        if (i+1) % 100 == 0:
            print('[Train] Step: %d, loss: %4.5f, acc: %4.5f' 
                  % (i+1, loss_val, acc_val))
        if (i+1) % 1000 == 0:
            test_data = CifarData(test_filenames, False)
            all_test_acc_val = []
            for j in range(test_steps):
                test_batch_data, test_batch_labels \
                    = test_data.next_batch(batch_size)
                test_acc_val = sess.run(
                    [accuracy],
                    feed_dict = {
                        x: test_batch_data, 
                        y: test_batch_labels
                    })
                all_test_acc_val.append(test_acc_val)
            test_acc = np.mean(all_test_acc_val)
            print('[Test ] Step: %d, acc: %4.5f' % (i+1, test_acc))

训练10k,准确率在70%

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
TensorFlow是一个被广泛应用于机器学习和深度学习的开源框架,它提供了丰富的工具和库来构建和训练神经网络模型。其中,CNN(卷积神经网络)是一种特别适用于图像处理任务的神经网络结构,而VGGNet19是其中一个经典的CNN模型。 在进行图像风格转化任务时,我们可以利用VGGNet19来实现。图像风格转化是一种将一张图像的内容与另一张图像的风格相结合的技术,常用于艺术创作和图像处理领域。在这个实战项目中,我们可以使用Jupyter Notebook来编写并运行我们的代码。 首先,我们需要准备两张输入图片,一张作为内容图像,一张作为风格图像。然后,我们可以使用VGGNet19模型来提取内容图像和风格图像的特征表示。接着,我们需要定义一个损失函数,该损失函数可以度量内容图像与生成图像之间的内容差异,以及风格图像与生成图像之间的风格差异。最后,我们可以使用梯度下降等优化算法来最小化损失函数,从而生成新的图像,使得它既保留了内容图像的内容特征,又融合了风格图像的风格特征。 在Jupyter Notebook中,我们可以逐步编写和调试这些代码,并及时查看生成的图像效果。通过这个实战项目,我们不仅能够深入理解CNN模型和图像风格转化的原理,还能够掌握如何使用TensorFlow和Jupyter Notebook进行实际的深度学习任务。这将为我们在图像处理和艺术创作领域带来更多的应用和创新可能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值