机器学习中的数学——激活函数(六):Parametric ReLU(PReLU)函数

分类目录:《机器学习中的数学》总目录
相关文章:
· 激活函数:基础知识
· 激活函数(一):Sigmoid函数
· 激活函数(二):双曲正切函数(Tanh函数)
· 激活函数(三): 线性整流函数(ReLU函数)
· 激活函数(四):Leaky ReLU函数
· 激活函数(五):ELU函数
· 激活函数(六):Parametric ReLU(PReLU)函数
· 激活函数(七):Softmax函数
· 激活函数(八):Swish函数
· 激活函数(九):Maxout函数
· 激活函数(十):Softplus函数
· 激活函数(十一):Softsign函数
· 激活函数(十二):高斯误差线性单元(GELUs)


PReLU 也是 ReLU 的改进版本:
P R e L U ( x ) = { x , x > 0 α i x , x ≤ 0 PReLU(x)=\left\{ \begin{aligned} x & \quad ,x > 0 \\ \alpha_i x & \quad , x\leq 0\\ \end{aligned} \right. PReLU(x)={xαix,x>0,x0

PReLU函数中,参数 α \alpha α通常为0到1之间的数字,并且通常相对较小。

  • 如果 α i = 0 \alpha_i=0 αi=0,则PReLU(x)变为 ReLU。
  • 如果 α i > 0 \alpha_i>0 αi>0,则PReLU(x)变为Leaky ReLU。
  • 如果 α i \alpha_i αi是可学习的参数,则PReLU(x)为PReLU函数。

PReLU函数的特点:

  • 在负值域,PReLU的斜率较小,这也可以避免Dead ReLU问题。
  • 与ELU相比,PReLU 在负值域是线性运算。尽管斜率很小,但不会趋于0。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

von Neumann

您的赞赏是我创作最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值