机器学习中的数学——激活函数(七):Softmax函数

Softmax函数是机器学习中用于多类分类问题的激活函数,它将实向量转换为概率分布,每个元素值在0到1之间且总和为1。这个函数在神经网络中常用于输出层,确保输出可以解释为类别的概率。尽管Softmax在某些区域(如负输入)的梯度为0,可能导致神经元死亡,但它仍然是多类分类任务的首选。本文深入探讨了Softmax的特性、问题及在PyTorch中的实现。
摘要由CSDN通过智能技术生成

分类目录:《机器学习中的数学》总目录
相关文章:
· 激活函数:基础知识
· 激活函数(一):Sigmoid函数
· 激活函数(二):双曲正切函数(Tanh函数)
· 激活函数(三): 线性整流函数(ReLU函数)
· 激活函数(四):Leaky ReLU函数
· 激活函数(五):ELU函数
· 激活函数(六):Parametric ReLU(PReLU)函数
· 激活函数(七):Softmax函数
· 激活函数(八):Swish函数
· 激活函数(九):Maxout函数
· 激活函数(十):Softplus函数
· 激活函数(十一):Softsign函数
· 激活函数(十二):高斯误差线性单元(GELUs)
· 深入浅出Pytorch函数——torch.softmax/torch.nn.functional.softmax
· 深入浅出Pytorch函数——torch.nn.Softmax


Softmax函数是用于多类分类问题的激活函数,在多类分类问题中,超过两个类标签则需要类成员关系。对于长度为 K K K的任意实向量,Softmax函数可以将其压缩为长度为 K K K,值在 [ 0 , 1 ] [0,1] [0,1]范围内,并且向量中元素的总和为1的实向量。

Softmax ( x ) = e x i ∑ i e x i \text{Softmax}(x)=\frac{e^{x_i}}{\sum_ie^{x_i}} Softmax(x)=iexiexi

Softmax函数与正常的max函数不同:max函数仅输出最大值,但Softmax函数确保较小的值具有较小的概率,并且不会直接丢弃。我们可以认为它是 arg max ⁡ \argmax argmax函数的概率版本或“soft”版本。Softmax函数的分母结合了原始输出值的所有因子,这意味着Softmax函数获得的各种概率彼此相关。

Softmax激活函数的特点:

  • 在零点不可微。
  • 负输入的梯度为零,这意味着对于该区域的激活,权重不会在反向传播期间更新,因此会产生永不激活的死亡神经元。
在PyTorch神经网络,常用的激活函数有Sigmoid函数、ReLU函数Softmax函数。Sigmoid函数机器学习的二分类模型常被使用,例如逻辑回归。它模拟了生物神经元的特性,当神经元获得的输入信号累计超过一定的阈值后,神经元被激活并输出电信号,否则处于抑制状态。ReLU函数是一种非线性函数,它在输入大于零时返回输入值,而在输入小于等于零时返回零。ReLU函数的主要作用是增加神经网络的表达能力,使其能够提取出高语义的信息。Softmax函数常用于多分类问题,它将输入向量转换为概率分布,使得每个类别的概率之和为1。通过选择适当的激活函数,可以提高神经网络的性能和准确度。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [PyTorch教程(5)激活函数](https://blog.csdn.net/weixin_43229348/article/details/119353266)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [一起来学PyTorch——神经网络激活函数层)](https://blog.csdn.net/TomorrowZoo/article/details/129453233)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

von Neumann

您的赞赏是我创作最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值