分类目录:《机器学习中的数学》总目录
相关文章:
· 激活函数:基础知识
· 激活函数(一):Sigmoid函数
· 激活函数(二):双曲正切函数(Tanh函数)
· 激活函数(三): 线性整流函数(ReLU函数)
· 激活函数(四):Leaky ReLU函数
· 激活函数(五):ELU函数
· 激活函数(六):Parametric ReLU(PReLU)函数
· 激活函数(七):Softmax函数
· 激活函数(八):Swish函数
· 激活函数(九):Maxout函数
· 激活函数(十):Softplus函数
· 激活函数(十一):Softsign函数
· 激活函数(十二):高斯误差线性单元(GELUs)
Sigmoid函数是一个在生物学中常见的S型函数,也称为S型生长曲线。在深度学习中,由于其单增以及反函数单增等性质,Sigmoid函数常被用作神经网络的激活函数,将变量映射到
[
0
,
1
]
[0, 1]
[0,1]之间。
S
(
x
)
=
1
1
+
e
−
x
S(x)=\frac{1}{1+e^{-x}}
S(x)=1+e−x1
Sigmoid函数的导数可以用其自身表示:
S
′
(
x
)
=
e
−
x
(
1
+
e
−
x
)
2
=
S
(
x
)
(
1
−
S
(
x
)
)
S'(x)=\frac{e^{-x}}{(1+e^{-x})^2}=S(x)(1-S(x))
S′(x)=(1+e−x)2e−x=S(x)(1−S(x))
Sigmoid函数的特性与优缺点:
- Sigmoid函数的输出范围是0到1。由于输出值限定在0到1,因此它对每个神经元的输出进行了归一化。
- 用于将预测概率作为输出的模型。由于概率的取值范围是0到1,因此Sigmoid函数非常合适
- 梯度平滑,避免跳跃的输出值
- 函数是可微的。这意味着可以找到任意两个点的Sigmoid曲线的斜率
- 明确的预测,即非常接近1或0。
- 函数输出不是以0为中心的,这会降低权重更新的效率
- Sigmoid函数执行指数运算,计算机运行得较慢。
Sigmoid函数及其导数的图像: