机器学习中的数学——激活函数(一):Sigmoid函数

分类目录:《机器学习中的数学》总目录
相关文章:
· 激活函数:基础知识
· 激活函数(一):Sigmoid函数
· 激活函数(二):双曲正切函数(Tanh函数)
· 激活函数(三): 线性整流函数(ReLU函数)
· 激活函数(四):Leaky ReLU函数
· 激活函数(五):ELU函数
· 激活函数(六):Parametric ReLU(PReLU)函数
· 激活函数(七):Softmax函数
· 激活函数(八):Swish函数
· 激活函数(九):Maxout函数
· 激活函数(十):Softplus函数
· 激活函数(十一):Softsign函数
· 激活函数(十二):高斯误差线性单元(GELUs)


Sigmoid函数是一个在生物学中常见的S型函数,也称为S型生长曲线。在深度学习中,由于其单增以及反函数单增等性质,Sigmoid函数常被用作神经网络的激活函数,将变量映射到 [ 0 , 1 ] [0, 1] [0,1]之间。
S ( x ) = 1 1 + e − x S(x)=\frac{1}{1+e^{-x}} S(x)=1+ex1

Sigmoid函数的导数可以用其自身表示:
S ′ ( x ) = e − x ( 1 + e − x ) 2 = S ( x ) ( 1 − S ( x ) ) S'(x)=\frac{e^{-x}}{(1+e^{-x})^2}=S(x)(1-S(x)) S(x)=(1+ex)2ex=S(x)(1S(x))

Sigmoid函数的特性与优缺点:

  • Sigmoid函数的输出范围是0到1。由于输出值限定在0到1,因此它对每个神经元的输出进行了归一化。
  • 用于将预测概率作为输出的模型。由于概率的取值范围是0到1,因此Sigmoid函数非常合适
  • 梯度平滑,避免跳跃的输出值
  • 函数是可微的。这意味着可以找到任意两个点的Sigmoid曲线的斜率
  • 明确的预测,即非常接近1或0。
  • 函数输出不是以0为中心的,这会降低权重更新的效率
  • Sigmoid函数执行指数运算,计算机运行得较慢。

Sigmoid函数及其导数的图像:
Sigmoid函数及其导数的图像

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

von Neumann

您的赞赏是我创作最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值