机器学习中的数学——激活函数(八):Swish函数

Swish是一种自我门控的激活函数,受到LSTM中sigmoid门控的启发。它通过x*Sigmoid(x)的形式实现,简化了gating机制,允许其直接替代ReLU等单输入激活函数,而无需改变网络结构。Swish函数避免了梯度消失问题,导数始终大于0,且具有平滑性,有利于优化和泛化。其特点包括防止饱和、导数恒正以及优化过程中的平滑性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类目录:《机器学习中的数学》总目录
相关文章:
· 激活函数:基础知识
· 激活函数(一):Sigmoid函数
· 激活函数(二):双曲正切函数(Tanh函数)
· 激活函数(三): 线性整流函数(ReLU函数)
· 激活函数(四):Leaky ReLU函数
· 激活函数(五):ELU函数
· 激活函数(六):Parametric ReLU(PReLU)函数
· 激活函数(七):Softmax函数
· 激活函数(八):Swish函数
· 激活函数(九):Maxout函数
· 激活函数(十):Softplus函数
· 激活函数(十一):Softsign函数
· 激活函数(十二):高斯误差线性单元(GELUs)


Swish 的设计受到了 LSTM 和高速网络中gating的sigmoid函数使用的启发。我们使用相同的gating值来简化gating机制,这称为self-gating。
Swish ( x ) = x ∗ S i g m o i d ( x ) \text{Swish}(x)=x*Sigmoid(x) Swish(x)=xSigmoid(x)

self-gating的优点在于它只需要简单的标量输入,而普通的gating则需要多个标量输入。这使得诸如Swish之类的self-gated激活函数能够轻松替换以单个标量为输入的激活函数(如:ReLU),而无需更改隐藏容量或参数数量。

Swish函数的特点

  • 有助于防止慢速训练期间,梯度逐渐接近0并导致饱和
  • 导数恒大于0。
  • 平滑度在优化和泛化中起了重要作用。

Swish函数的图像:
Swish函数的图像

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

von Neumann

您的赞赏是我创作最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值