机器学习中的数学——激活函数(四):Leaky ReLU函数

LeakyReLU是一种改进的激活函数,旨在解决ReLU函数中负输入导致的零梯度问题。它在负区给出了一个小的线性斜率(通常α取0.01),扩大了函数的输出范围。本文详细介绍了LeakyReLU的定义、特点及其在神经网络中的应用,包括函数图像和对比传统的ReLU函数的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类目录:《机器学习中的数学》总目录
相关文章:
· 激活函数:基础知识
· 激活函数(一):Sigmoid函数
· 激活函数(二):双曲正切函数(Tanh函数)
· 激活函数(三): 线性整流函数(ReLU函数)
· 激活函数(四):Leaky ReLU函数
· 激活函数(五):ELU函数
· 激活函数(六):Parametric ReLU(PReLU)函数
· 激活函数(七):Softmax函数
· 激活函数(八):Swish函数
· 激活函数(九):Maxout函数
· 激活函数(十):Softplus函数
· 激活函数(十一):Softsign函数
· 激活函数(十二):高斯误差线性单元(GELUs)


它是一种专门设计用于解决Dead ReLU问题的激活函数:

L e a k y R e L U ( x ) = { x , x > 0 α x , x ≤ 0 Leaky ReLU(x)=\left\{ \begin{aligned} x & \quad ,x > 0 \\ \alpha x & \quad , x\leq 0\\ \end{aligned} \right. LeakyReLU(x)={xαx,x>0,x0

Leaky ReLU函数的特点:

  • Leaky ReLU函数通过把 x x x的非常小的线性分量给予负输入 0.01 x 0.01x 0.01x来调整负值的零梯度问题。
  • Leaky有助于扩大ReLU函数的范围,通常 α \alpha α的值为0.01左右。
  • Leaky ReLU的函数范围是负无穷到正无穷。

Leaky ReLU函数的图像:
Leaky ReLU函数的图像

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

von Neumann

您的赞赏是我创作最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值