凸优化第四章凸优化问题 4.4 二次优化问题

4.4 二次优化问题

  1. 基本概念
  2. 例子
  3. 二次锥规划

4.4.1 基本概念

二次优化

当凸优化问题的目标函数是凸二次型并且约束函数为仿射函数时,问题为二次规划:

\begin{array}{ll} \operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x+r \\ \text { subject to } & G x \preceq h \\ & A x=b \end{array}

其中P \in \mathbf{S}_{+}^{n}, G \in \mathbf{R}^{m \times n}, A \in \mathbf{R}^{p \times n}

在二次规划问题中,我们在多面体上极小化一个图二次函数。如下所示:

二次约束二次规划

 

二次约束二次规划,即目标函数和不等式约束函数均为凸二次型:

\begin{array}{ll} \text { minimize } & (1 / 2) x^{T} P_{0} x+q_{0}^{T} x+r_{0} \\ \text { subject to } & (1 / 2) x^{T} P_{i} x+q_{i}^{T} x+r_{i} \leqslant 0, \quad i=1, \cdots, m \\ & A x=b \end{array}

其中P_{i} \in \mathbf{S}_{+}^{n}, i=0,1, \cdots, m

这里记LP 为线性规划,QP为二次规划,QCQP为二次约束二次规划,可知LP \subseteq QP \subseteq QCQP

当QCQP中的P_i=0,i=1,2,\cdots, m时,QCQP变为QP。

当QP中的P_0=0时,QP变为LP。

4.4.2 例子

最小二乘及回归

minimize \,\begin{Vmatrix} Ax-b \end{Vmatrix}_2^2

无约束的情况下,最小二乘问题是一个二次规划。

解析解:是A 的伪逆。

增加线性约束:l\leq x\leq u,也是一个二次规划问题。

如果约束为:x_1\leq x_2\leq \cdots \leq x_n,对约束进行整理,整理成:x_{i+1}-x_i\geq 0,i=1,2\cdots n-1,也是线性约束,也是二次规划问题。

多面体间距离

多面体\mathcal{P}_{1}=\left\{x \mid A_{1} x \preceq b_{1}\right\}\ and \ \mathcal{P}_{2}=\left\{x \mid A_{2} x \preceq b_{2}\right\}间的距离定义为:

\operatorname{dist}\left(\mathcal{P}_{1}, \mathcal{P}_{2}\right)=\inf \left\{\left\|x_{1}-x_{2}\right\|_{2} \mid x_{1} \in \mathcal{P}_{1}, x_{2} \in \mathcal{P}_{2}\right\}

为了得到两多面体间的距离,我们求解如下问题:

\begin{array}{ll} \operatorname{minimize} & \left\|x_{1}-x_{2}\right\|_{2}^{2} \\ \text { subject to } & A_{1} x_{1} \preceq b_{1}, \quad A_{2} x_{2} \preceq b_{2} \end{array}

方差界定

我们再次考虑Chebyshev不等式的例子,其变量是由p \in R^n给出的未知概率分布,并且我们对其有一些先验知识。随机变量f(x)的方差由:\mathbf{E} f^{2}-(\mathbf{E} f)^{2}=\sum_{i=1}^{n} f_{i}^{2} p_{i}-\left(\sum_{i=1}^{n} f_{i} p_{i}\right)^{2}给出,其中f_{i}=f\left(u_{i}\right),这是关于p的凹二次函数。

为了得到最大可能方差,我们求解如下问题:

\begin{array}{ll} \operatorname{maximize} & \sum_{i=1}^{n} f_{i}^{2} p_{i}-\left(\sum_{i=1}^{n} f_{i} p_{i}\right)^{2} \\ \text { subject to } & p \succeq 0, \quad \mathbf{1}^{T} p=1 \\ & \alpha_{i} \leqslant a_{i}^{T} p \leqslant \beta_{i}, \quad i=1, \cdots, m \end{array}

关于随机费用的线性规划

考虑线性规划:

\begin{array}{ll} \operatorname{minimize} & c^{T} x \\ \text { subject to } & G x \preceq h \\ & A x=b \end{array}

 

其中,c是随机向量,\bar{c}是c的均值,\Sigma是协方差,且\mathbf{var}(c^Tx)=E(c^Tx-E(c^Tx))^2=E(c^Tx-\bar{c}^Tx)^2=E(x^T(c^T-\bar{c}^T)^2x)

根据协方差公式:cov(X,Y)=E((X-E(X))(Y-E(Y)))\Rightarrow cov(c,c)=E((c-\bar{c})(c-\bar{c})^T)

\Rightarrow\mathbf{ var}(c^Tx)=x^T\Sigma x

一般地,在小的费用期望和小的费用方差之间有一个权衡。考虑方差的一种方法是 极小化费用的期望和方差的线性组合,即:\mathbf{E} c^{T} x+\gamma \operatorname{var}\left(c^{T} x\right),这个函数称为风险敏感费用。系数\gamma\geq 0,称为风险回避参数,它越大,表示越在意费用方差,即越希望费用方差充分小(通过增加期望费用)。

为极小化风险敏感费用,我们可以求解如下问题:

\begin{array}{ll} \operatorname{minimize} & \bar{c}^{T} x+\gamma x^{T} \Sigma x \\ \text { subject to } & G x \preceq h \\ & A x=b \end{array}

Markowitz投资组合优化

       我们考虑在一时期内持有n种资产或股票的经典的投资组合问题。我们用x_i表示在这个时期内持有资产i的数量,x_i以美元为单位,用开始时的价格进行度量。一般地,资产i的多头对应于x_i>0,资产i的空头(即在期末购买资产的契约)对应于x_i<0​​​​​​​。我们用p_i表示资产在整个时期内的相对价格变动,即其整个时期内的资产变动除以其在开始时的价格。投资总回报为r=p^Tx(以美元给出)。优化变量为投资组合向量x \in R^n
       可以考虑对于投资组合的各种约束。最简单的约束是x_i\geq 0 (即没有空头)和1^Tx=B(即总投资预算为B,B常取为1)。
       我们用随机模型来描述价格变动:p \in R^n为随机变量,其均值p和协方差\Sigma已知。所以,对于投资组合x \in R^n,其回报r是(标量)随机变量,均值为\bar{p}^{T} x,方差为x^{T} \Sigma x。投资组合x的选择需要考虑平均回报和方差之间的权衡。

       求解以下问题,即在最小可接受平均回报率r_{min}的约束下极小化回报方差:

\begin{array}{ll} \operatorname{minimize} & x^{T} \Sigma x \\ \text { subject to } & \bar{p}^{T} x \geqslant r_{\min } \\ & \mathbf{1}^{T} x=1, \quad x \succeq 0 \end{array}

4.4.3 二阶锥规划

二阶锥规划(SOCP):

\begin{array}{ll} \operatorname{minimize} & f^{T} x \\ \text { subject to } & \left\|A_{i} x+b_{i}\right\|_{2} \leqslant c_{i}^{T} x+d_{i}, \quad i=1, \cdots, m \\ & F x=g \end{array}

其中x \in R^n为优化变量,A_{i} \in \mathbf{R}^{n_{i} \times n},F \in \mathbf{R}^{p \times n}

 

\begin{Vmatrix} A_ix+b_i \end{Vmatrix}_2\leq c_i^Tx+d_i这种形式的约束为二阶锥约束。因为这等同于要求仿射函数(A_ix+b_i, c_i^Tx+d_i)在二阶锥R^{(n_i+1)}中。

c_{i}=0, i=1, \cdots, m时,SOCP退化为QCQP。当A_{i}=0, i=1, \cdots, m时,SOCP退化为LP问题。

鲁棒线性规划

考虑不等式形式的线性规划问题:

\begin{array}{ll} \operatorname{minimize} & c^{T} x \\ \text { subject to } & a_{i}^{T} x \leqslant b_{i}, \quad i=1, \cdots, m \end{array}

 

其中参数a_i,b_i,c含有一些不确定性或变化。

简化起见,假设只有a_i有不确定性,其他都是确定的。

已知a_i在给定的椭球中:a_i \in \varepsilon _i=\left \{ \bar{a_i}+P_iu|\begin{Vmatrix} u \end{Vmatrix}_2\leq 1 \right \},所以问题变成:

\begin{array}{ll} \operatorname{minimize} & c^{T} x \\ \text { subject to } & a_{i}^{T} x \leqslant b_{i}, \forall a_{i} \in \mathcal{E}_{i}, \quad i=1, \cdots, m \end{array}

 

不等式约束又可以表示成:sup\left \{ a_i^Tx|a_i \in \varepsilon _i \right \}\leq b_i

\begin{aligned} \sup \left\{a_{i}^{T} x \mid a_{i} \in \mathcal{E}_{i}\right\} &=\bar{a}_{i}^{T} x+\sup \left\{u^{T} P_{i}^{T} x \mid\|u\|_{2} \leqslant 1\right\} \\ &=\bar{a}_{i}^{T} x+\left\|P_{i}^{T} x\right\|_{2} \end{aligned}

所以上述约束变为\bar{a_i}x+\begin{Vmatrix} P_i^Tx \end{Vmatrix}_2\leq b_i

问题变成:

\begin{array}{ll} \operatorname{minimize} & c^{T} x \\ \text { subject to } & \bar{a}_{i}^{T} x+\left\|P_{i}^{T} x\right\|_{2} \leqslant b_{i}, \quad i=1, \cdots, m \end{array}

随机约束下的线性规划

设参数a_i是独立搞死随机变量,均值为\bar{a_i},协方差为\Sigma _i,要求每一个约束a_i^Tx \leq b_i成立的概率超过\eta,且\eta \geq 0.5,即prob(a_i^Tx \leq b_i)\geq \eta

u=a_i^Tx,均值\bar{a_i}^Tx,方差x^T\Phi _ix,因此

prob(a_i^Tx \leq b_i)=prob(\frac{a_i^Tx-\bar{a_i}^Tx}{\begin{Vmatrix} \Sigma _i^{1/2}x \end{Vmatrix}_2}\leq \frac{b_i-\bar{a_i}^Tx}{\begin{Vmatrix} \Sigma _i^{1/2}x \end{Vmatrix}_2})

所以

prob(a_i^Tx\leq b_i)=\Phi (\frac{b_i-\bar{a_i}^Tx}{\begin{Vmatrix} \Sigma _i^{1/2}x \end{Vmatrix}_2})\Phi(x)= (\frac{1}{\sqrt{2\pi }})\int_{-\infty }^{x}e^{-t^2/2}dt

所以:prob(a_i^Tx \leq b_i)\geq \eta可以写成:

\frac{b_i-\bar{a_i}^Tx}{\begin{Vmatrix} \Sigma _i^{1/2}x \end{Vmatrix}_2}\geq \Phi ^{-1}(\eta)\Rightarrow \bar{a_i}^Tx+\begin{Vmatrix} \Sigma _i^{1/2}x \end{Vmatrix}_2\Phi ^{-1}(\eta)\leq b_i

问题:

\begin{array}{ll} \text { minimize } & c^{T} x \\ \text { subject to } & \text { prob }\left(a_{i}^{T} x \leqslant b_{i}\right) \geqslant \eta, \quad i=1, \cdots, m \end{array}

变为:

\begin{array}{ll} \text { minimize } & c^{T} x \\ \text { subject to } & \bar{a}_{i}^{T} x+\Phi^{-1}(\eta)\left\|\Sigma_{i}^{1 / 2} x\right\|_{2} \leqslant b_{i}, \quad i=1, \cdots, m \end{array}

 

参考:https://blog.csdn.net/wangchy29/article/details/86608176

 

  • 1
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

使君杭千秋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值