需要创建的文件夹
需要修改的yaml有两个:data一个、model一个
在yaml文件中删除下载数据集 因为我已经下载好了
注释掉path因为我不需要下载数据集 在source里面已经重新给定地址了 否则会报错
val为验证数据防止过拟合,与train是配合使用的关系
其中主要功能文件夹
detect为验证集所使用的文件
weights存放训练好的模型 刚开始训练就为空
source 是验证集的地址
data是yaml文件地址 里面有类别文件和训练集、测试集的地址
def parse_opt():
parser = argparse.ArgumentParser()
# 权重设置 放训练好的best
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path or triton URL')
# 图片存放地址
parser.add_argument('--source', type=str, default=ROOT / 'mydata/072 - 54.jpg', help='file/dir/URL/glob/screen/0(webcam)')
# parser.add_argument('--source', type=str, default=ROOT / 'data/images/flax.jpg', help='file/dir/URL/glob/screen/0(webcam)')
# parser.add_argument('--source', type=str, default=ROOT / 'data/video/现状.mp4', help='file/dir/URL/glob/screen/0(webcam)')
parser.add_argument('--data', type=str, default=ROOT / 'data/mydata.yaml', help='(optional) dataset.yaml path')
# 图片大小
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
# con置信度 大于才相信是
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
# iou置信度 值为交并比 默认为1则为框需要完全重合 0为框和框没交集
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per ima