AI 项目:在 Android 手机上运行 LLaMA 和 Gemma AI 模型 使用 C++ 和 Python 运行 LLaMA 和 Gemma LLM

本文介绍了如何在Android手机上利用Termux运行LLaMA和Gemma大语言模型。通过Termux,一个Linux终端应用,配合SSH,可以在手机上执行LLaMA.CPP和Gemma.CPP。测试表明,尽管7B参数的模型在速度上有限,但2B模型表现出色,适合移动设备。这种方法降低了运行大型语言模型的成本,且便于开发。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如今,“移动AI”已成为快速发展的趋势。智能手机变得更加强大,大型机型变得更加高效。有些客户可能想等到手机制造商添加新功能,但我们可以自己使用最新的人工智能模型吗?确实,我们可以,而且结果很有趣。在本文中,我将展示如何在 Android 手机上运行 LLaMA 和 Gemma 大语言模型,我们将了解它是如何工作的。像往常一样,在我的所有测试中,所有模型都将在本地运行,并且不需要云 API 或付款。

让我们开始吧!

Termux

我们测试的第一个组件是Termux,这是一个作为 Android 应用程序制作的成熟的 Linux 终端。它是免费的,并且不需要 root 访问权限;所有 Linux 组件都专门在 Termux 文件夹中运行。Termux 可以从Google Play下载,但在撰写本文时,该版本相当旧,Termux 中的“pkg update”命令不再起作用。F-Droid网站上提供了较新版本的 APK ;它运行良好,我使用它没有任何问题。

当Termux安装在手机上后,我们可以运行它并看到标准的Linux命令行界面:

在这里插入图片描述

### Llama3 Gemma2 的特性、性能及应用场景比较 #### 特性 (Features) Llama3 是 Meta 开发的一系列开源大语言模型中的最新版本之一,其主要特点在于支持多模态输入以及更高的上下文长度处理能力[^1]。相比之下,Gemma2 则是由 MoonShot 推出的一款闭源大型语言模型,专注于对话理解生成质量优化。 - **多模态支持**: Llama3 提供了更强的图像文本联合理解功能,而 Gemma2 主要集中在纯文本交互上。 - **参数规模**: 虽然具体数值未公开披露,但从先前版本推测,两者可能处于相似量级但各有侧重领域内的调优策略不同。 #### 性能 (Performance) 在实际测试中发现: - 对于复杂逻辑推理任务如数学计算或者编程代码撰写方面,基于前代产品表现来看,Llama 系列通常展现出较强优势因为它们接受过广泛技术文档训练从而具备良好编码能力科学知识基础; - 另一方面,在涉及自然流畅的人际交流场景下比如客服聊天机器人应用场合里,则可能是经过专门微调后的Gemmas系列产品会更胜一筹由于它更加注重用户体验友好性情感共鸣建立过程。 #### 应用场景 (Use Cases) 鉴于上述区别可以得出结论如下: - 如果目标项目需要利用到视觉数据配合文字分析解释等功能模块构建解决方案的话那么选择Meta家出品LLaMA家族成员将是明智之举因为它能够很好地融合不同类型的信息资源来解决问题并提供全面见解; - 当仅仅关注高质量书面表达或者是创建虚拟助手用于日常沟通联系目的之时考虑采用由Moonshot打造而成GEMMAs品牌也许更为合适因其擅长营造亲切互动氛围使得机器回复听起来更像是真人所说话语一般温暖贴心. ```python # 示例代码展示如何加载预训练模型(假设存在官方API) from transformers import pipeline nlp_llama = pipeline('text-generation', model='meta-llm/Llama3') nlp_gemma = pipeline('conversational', model='moonshot/Gemma2') result_llama = nlp_llama("Explain quantum mechanics simply.") result_gemma = nlp_gemma([{"speaker":"USER","text":"Tell me about your day?"},{"speaker":"BOT"}]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值